
Chapter 46:

.NET Core with csproj

What’s in this Chapter?

.NET Core CLI

.NET Standard

Using Legacy Libraries

Creating Self-Contained Applications

Migration from project.json

Microsoft’s Support Strategy

Wrox.com Code Downloads for This Chapter
The wrox.com code downloads for this chapter are found at

www.wrox.com/go/procsharp on the Download Code tab. The code

for this chapter is divided into the following major examples:

▪ HelloWorld

▪ HelloWorldSelfContained

▪ XUnitTestSample

▪ MSTestSample

Samples from other chapters are used as well to initiate the migration

process.

Overview

The book Professional C# 6 and .NET Core 1.0 was released with

Visual Studio 2015. Shortly after the book release, .NET Core 1.0 was

released on June 27th, 2016. While .NET Core was released, the tools for

.NET Core have been in a preview state. Now, with the release of Visual

Studio 2017, the .NET Core tools are released as well. While the source

code for .NET Core did not change, the project files changed.

To give you all the information what changed to make your way through

.NET Core, this Chapter gives you all the information you need with the

new tools. There’s some overlap with information you can already read in

the book. However, with the release of the tool it helps having a fresh view

and not only include information what’s changed.

All the samples for the book have been updated to Visual Studio 2017. At

the GitHub repository of the book

(https://www.github.com/ProfessionalCSharp/Professi

onalCSharp6) you can get the Visual Studio 2015 version of the projects

in the VS2015 branch, and the Visual Studio 2017 version in the VS2017

and Master branches.

The book described the project file project.json, as this was the

project file used with Visual Studio 2015. Instead of using this file with

JSON syntax, a switch was made back to XML with a csproj file to support

MSBuild. Previously the MSBuild project file was very long and not easy to

work with an editor. This has changed. Now a lot of defaults are defined,

which reduce the length of the file and make it easier to work with. For

example, instead of the need to add every source file of the project

explicitly, now by default all C# files from the directory are added

automatically.

Note

Why did the project file change? When .NET Core was created, MSBuild
was only available on Windows, not on Linux or other platforms. Because
of this, a custom build engine was created for .NET Core. A new build

engine making use of project.json was created. This project file was

using JSON with similarities to other project files, e.g. npm (Node Package

Manager) with package.json for scripting packages.

Using the project.json based build engine also had some

disadvantages. While older legacy projects (Windows Forms, WPF…) still
were based on the XML syntax of csproj files. Thus, some great tools of
Visual Studio available for legacy applications didn’t support the JSON

syntax of project.json.

Over time, MSBuild was open sourced, and is now available on Linux as
well. This opened the door to use this mature and full capable build engine
with .NET Core.

However, because the csproj syntax was way too much babbling, and
thus was not meant to write this file by hand, the syntax had to be
simplified. During the previews of the new csproj syntax, the project file
was shortened build after build. Now we have a practically short version of
this file that can also be created by hand.

Now, instead of using the .NET Core CLI tools from Visual Studio and
Visual Studio Code, a shared SDK component is available that defines the
build commands. The .NET Core CLI tools, as well as Visual Studio and
Visual Studio Code make use of this shared component. The repository of

the shared component is https://github.com/dotnet/sdk, while the

.NET Core CLI tools are available at

https://github.com/dotnet/cli.

While the progress to csproj is great, there are still some disadvantages
on the new XML syntax and the current state of the tools. If you were used

to add NuGet packages directly within project.json in the code editor,

doing the same with csproj, you might miss Intellisense. For getting this
you can install the Visual Studio extension Project File Tools. With an
update of Visual Studio, this feature will likely be supported directly from
Visual Studio.

Another issue you might get into is that not all tools of Visual Studio
support the new csproj syntax yet. For example, Live Unit Testing, a new
feature of Visual Studio 2017, does not support .NET Core yet. I’m sure
this will change in the future.

If you have bad feelings against XML in favor of JSON, stay open
minded. I’m comparing XML to JSON likewise to Visual Basic and C# -
with open/close statements compared to curly brackets. Don’t be misled by
this statement. The new csproj syntax is a lot better than the old one. Also,
in Visual Studio, you can edit the csproj files without unloading the project
which is still needed with older csproj project types.

.NET Core Versions and
Microsoft’s Support

Before getting more into the new project system, you need to decide

which .NET Core version best fits for your environment. Are you already

programming agile, offering new features for your users in a fast pace and

would like to use new APIs that can be advantageous for your application,

or do you prefer not to update your application that often?

Selecting the version of .NET Core for your applications depends on your

needs. You need to be aware of the strategies for Long Term Support

(LTS) and the Current version.

The LTS version has a much longer support time than the Current release.

In order to be on a release that is supported by Microsoft and receives

updates, you need to update applications written with the Current release

more often. You also have more features available.

At the time of this writing, the version on the LTS release cycle is .NET

Core 1.0, while the Current version is .NET Core 1.1. The following table

shows simplified information with the Current and LTS releases, their

release dates, the current patch versions (a patch just contains fixes but no

new features), and the support end.

.NET Core Versions

Version Release Date Patch Version Support Level Support End
(simplified)

.NET Core 1.1 Nov 16, 2016 1.1.1 Current 3 months after
next Current

.NET Core 1.0 June 27, 2016 1.0.4 LTS 12 months
after next LTS

The support end column from this table gives not the complete truth, but it

gives the dates as expected. To be more precise on the LTS support length:

LTS is supported until 3 years after the release (which would be June 27,

2019), or 12 months after the next LTS release, whichever is shorter.

Assuming we get the next LTS release in Oct, 2017, the support of .NET

Core 1.0 ends Oct 2018. In case we need to wait for the next LTS release

until Jan 2019, support for .NET Core 1.0 ends June 27, 2019.

To be more precise on the end of support for the Current release: the end of

support ends 3 years after the release of the LTS version, or 12 months after

the next LTS version, or 3 months after the next Current version, whichever

is shorter. With this, the longest time the Current release could be

supported is June 27, 2019 - assuming there are no newer versions before.

In case we get a new LTS version in Oct, 2017, the support is reduced until

Oct, 2018. However, let’s assume we get a new Current version after the

next LTS in Feb, 2018, the end of support moves to an earlier date which is

May, 2018.

In a different scenario, we get a new Current version in May, 2017 - then

the support for .NET Core 1.1 already ends Aug, 2017.

With this information in mind, you need to decide between the features you

need (and probably you get some new features with a new current version),

and the support length that is needed for your projects. Depending on the

versions you select you also need to select the corresponding libraries that

require specific minimum .NET Core versions. For example, to use the new

features of Entity Framework Core 1.1, you also need .NET Core 1.1. You

cannot use Entity Framework Core 1.1 with a .NET Core 1.0 project.

Note

Read more about actual information of LTS and Current support cycles at

https://www.microsoft.com/net/core/support.

.NET Core CLI

Now let’s get into the .NET Core Command Line interface. You can

get the source code and newer upcoming versions at

https://github.com/dotnet/cli. Version 1.0 is distributed with

Visual Studio 2017 - you just need to select the .NET Core workloads from

the Visual Studio Installer. Without Visual Studio, and for other platforms,

you can get the tools with the SDK from

https://www.microsoft.com/net/download/core. With

.NET Core installed, on a Windows system you can find it at %Program

Files%\dotnet.

While the tools with its arguments are mainly the same as in the preview

(also a few changes - for the better - have been made, such as the support of

templates for dotnet new), the output changed. Let’s get into the

process flow:

▪ dotnet new

▪ dotnet restore

▪ dotnet build

▪ dotnet run

dotnet new

You can create a new project with dotnet new. Contrary to the

previous version of this tool, starting the command dotnet new does not

create a console application. Instead, you’ll get a list of installed templates

and need to specify the template. This is much more powerful, as more

options are available, and you can also create your own templates for

creating new applications and files.

Let’s start with a simple console application. Before starting the command,

create the subdirectory HelloWorld, and set the current directory to this

subdirectory.

This command creates the project for a console application:

> dotnet new console --language C# --framework netcoreapp1.1

You can write the command without the option --language. C# is the

default language. You can also create console applications with F#. If you

do not add the --framework option, the version selected is Long Term

Support (LTS), version 1.0.

Note

For LTS and Current support, check the section .NET Core Versions and
Microsoft’s Support earlier in the Chapter.

In case the project shouldn’t have the same name as the current directory,

you can use the option --name and give the project a different name.

Using this option, a new subdirectory is created, and the new files are

stored in this subdirectory. You can also supply the option --output to

specify an output directory.

To see a list of the options available, add the --help option, e.g.

> dotnet new console --help

With ASP.NET MVC Core applications, the list of options is slightly

longer:

> dotnet new mvc --help

For ASP.NET MVC Core applications, you can select the authentication to

use, LocalDB or SQLite for the database, and the .NET Core version:

ASP.NET Core Web App (C#)

Author: Microsoft

Options:

 -au|--auth The type of authentication to use

 None - No authentication

 Individual - Individual authentication

 Default: None

 -uld|--use-local-db Whether or not to use LocalDB instead of SQLite

 bool - Optional

 Default: false

 -f|--framework

 netcoreapp1.0 - Target netcoreapp1.0

 netcoreapp1.1 - Target netcoreapp1.1

 Default: netcoreapp1.1

The result of creating a console application is the source code file

Program.cs, and the project file HelloWorld.csproj.

Program.cs is a simple Hello, World! application where the C# source

code didn’t change compared to the previous release. The project file

HelloWorld.csproj contains the new XML syntax for the build file.

The file is very short as useful defaults have been defined (code file

HelloWorld\HelloWorld.csproj):

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>netcoreapp1.1</TargetFramework>

 </PropertyGroup>

</Project>

The root element of the csproj file is the Project element. The Sdk

attribute is set to Microsoft.NET.Sdk - this defines the available and

configured MSBuild tasks and targets. With Web projects, the Sdk

attribute is set to Microsoft.NET.Sdk.Web.

Microsoft.NET.Sdk.Web contains additional defaults such as

publishing settings for the wwwroot folder, cshtml files, and more.

The element Project contains PropertyGroup elements. The only

PropertyGroup that is created within the simple Console application

defines the OutputType of the application to be an executable, and the

version of .NET Core with the alias netcoreapp1.1.

Note

Selecting netcoreapp (or netstandard with libraries) with the

TargetFramework element implicitly references the meta-packages

Microsoft.NetCore.App or NetStandard.Library, so you do not

need to reference these packages explicitly.

Specifying multiple Target Frameworks

Instead of just building an application for a single framework, a

csproj file can be configured to build the application for multiple

frameworks. For this, you need to specify the element

TargetFrameworks instead of TargetFramework and specify the

frameworks with the ; delimiter. The following snippet specifies .NET

Core 1.1 and .NET Framework 4.6.2 as target frameworks:

<TargetFrameworks>netcoreapp1.1;net462</TargetFrameworks>

Specifying multiple frameworks results in multiple binaries being compiled

for the application. For every target framework, a subdirectory is created

for the above example.

Adding More Templates for dotnet new

You can install additional templates for the dotnet new command. For

example, to get Single Page Application (SPA) templates with Angular,

Aurelia, Knockout, and React, you can start this command:

> dotnet new --install "Microsoft.AspNetCore.SpaTemplates::*"

Note

See https://github.com/aspnet/javascriptservices for more

information on these templates. Check the list on templates for dotnet

new at
https://github.com/dotnet/templating/wiki/Available-

templates-for-dotnet-new. For creating custom templates read this

blog from the .NET team:
https://blogs.msdn.microsoft.com/dotnet/2017/04/02/how-

to-create-your-own-templates-for-dotnet-new/.

More Project Templates

The command dotnet new --list shows all the templates that are

available for you. Examples are classlib to create a .NET Standard

library, xunit to create an XUnit test project, mstest to create a

Microsoft Test project, web for an empty Web application, and mvc for a

Web application containing ASP.NET Core MVC code.

If the current directory of the command line is an already created project,

the result of donet new --list is different. Here, you can create a

configuration file for building a NuGet package (nugetconfig), a

configuration file for a Web application (webconfig), or a solution file

(sln).

Note

Depending on what the current directory is, dotnet new --list gives

a different output. Set the current directory to an empty directory to see the
options for projects you can create. If you are already positioned in a
directory that already contains a project file, you can only see templates
that you can create in this directory.

Note

The .NET Standard allows creating libraries that can be used from .NET
Core, the .NET Framework, and Xamarin. The .NET Standard removes the
need for portable libraries and is discussed later in this Chapter.

dotnet restore

After the project has been created, dotnet restore downloads

all NuGet packages and creates a build file.

The NuGet packages are downloaded to the users’ profile (on a Windows

system, the directory %UserProfile%\.nuget\packages, on Linux:

~/.nuget/packages), thus invoking the command another time, also

from another project, the same files do not need to be downloaded from the

NuGet server once more. Where the files are downloaded from is defined in

the file NuGet.Config. This file resides in the roaming profile directory

%AppData%\NuGet or ~/.nuget/NuGet/ on Linux and contains the

link to the NuGet server:

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <packageSources>

 <add key="nuget.org" value="https://api.nuget.org/v3/index.json"

 protocolVersion="3" />

 </packageSources>

</configuration>

Depending on your configuration, different servers (or simple folders with

.nupk files) could be added. You can also link to your own NuGet server.

If you have a project that needs a different configuration than the default

one, you can add a custom NuGet.Config to the project directory. This

file located in the project directory is used instead of the default one.

Note

Different NuGet servers are needed if you work with daily builds. For
example, the daily builds of the upcoming .NET Core 2.0 are located at

https://dotnet.myget.org/gallery/dotnet-core.

dotnet restore also creates MSBuild files located in the obj

subdirectory of the project. The file with the props extension contains

properties of the project where you can see the folder of the NuGet

packages that is used, as well as the version of the NuGet tool that is used.

The second MSBuild file generated ends with the targets file extension and

contains the build targets. Another file is generated:

project.assets.json. In this file, you can see all the NuGet

packages and projects that are referenced - including the complete

hierarchical tree to show all dependencies with the version number.

dotnet build

After restoring all NuGet packages, the project can be built. This is

done with the command dotnet build. This command requires the

previously mentioned project.assets.json file

Starting this command creates a bin directory for the binaries, and

compiles the sources to build the binaries. By default, a Debug build is

done where the binaries are put into the bin/Debug directory. You can

supply the configuration with the --configuration option:

> dotnet build --configuration Debug

Debug and Release configurations are available by default. The generated

IL code for a simple Hello, World! program differs between debug and

release builds. You can verify the intermediate language (IL) code from the

generated library HelloWorld.dll using the tool ildasm (.NET Framework

IL Disassembler). There you can see that the debug build contains nop (no

operation) statements in the Main method before and after the

WriteLine, whereas the nop statements are removed from the release

build.

Note

You can also create custom configurations (e.g. for staging and
production servers).

dotnet run

With dotnet run you can run the application. dotnet run

also builds the application if it wasn’t built before. With the option --

configuration you can supply to build debug or release builds

> dotnet run --configuration Release

The dotnet run command is not meant for the production environment.

For production, a publish package should be built. This is discussed later in

this Chapter.

Note

dotnet new, dotnet restore, dotnet build, and dotnet run

are the commands you typically need with a build process. More
commands are available for unit testing, creating NuGet packages,
migration from old project files, and more. Many additional commands are
discussed in the next sections in this Chapter.

Project Metadata

With the .NET Framework (and .NET Core projects created with

Visual Studio 2015), project metadata is typically stored in the file

AssemblyInfo.cs using assembly-scoped attributes. Attribute types

typically used are AssemblyTitle, AssemblyDescription,

AssemblyCompany, AssemblyProduct, AssemblyCopyright

and AssemblyTrademark. This is still possible with the new project

format. If the assembly attributes should be used, generating this

information from MSBuild needs to be disabled by setting the

corresponding MSBuild elements. A few examples of these elements are

GenerateAssemblyTitleAttribute,

GenerateAssemblyDescriptionAttribute,

GenerateAssemblyCompanyAttribute that can be set to false.

<PropertyGroup>

 <TargetFramework>netcoreapp1.0</TargetFramework>

 <AssemblyName>SimpleArrays</AssemblyName>

 <OutputType>Exe</OutputType>

 <GenerateAssemblyTitleAttribute>false</GenerateAssemblyTitleAttribute>

 <GenerateAssemblyDescriptionAttribute>false

 </GenerateAssemblyDescriptionAttribute>

 <GenerateAssemblyConfigurationAttribute>false

 </GenerateAssemblyConfigurationAttribute>

 <GenerateAssemblyCompanyAttribute>false</GenerateAssemblyCompanyAttribute>

 <GenerateAssemblyProductAttribute>false</GenerateAssemblyProductAttribute>

 <GenerateAssemblyCopyrightAttribute>false

 </GenerateAssemblyCopyrightAttribute>

</PropertyGroup>

Defining project metadata, you can define the settings with the Package tab

in the project properties of Visual Studio (see Figure 46-1).

Figure 46-1

After changing the metadata with Visual Studio, HelloWorld.csproj

contains the updates with Authors, Company, Product,

Description, and other elements:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFrameworks>netcoreapp1.1;net462</TargetFrameworks>

 <Authors>Christian Nagel</Authors>

 <Company>CN innovation</Company>

 <Product>Sample App</Product>

 <Description>Sample app for Professional C# 6 and .NET Core 1.0

 </Description>

 <Copyright />

 <RepositoryUrl>

 https://www.github.com/ProfessionalCSharp/ProfessionalCSharp6

 </RepositoryUrl>

 <RepositoryType>Git</RepositoryType>

 <PackageTags>.NET Core, CLI</PackageTags>

 <PackageProjectUrl>

 https://www.github.com/ProfessionalCSharp/ProfessionalCSharp6

 </PackageProjectUrl>

 </PropertyGroup>

</Project>

Working with Solutions

The release of .NET Core tools allow working with solution files.

While Visual Studio supports working with solutions for a long time,

creating and managing solution files was not available with the .NET Core

CLI tools in the pre-release version.

Visual Studio 2017 allows working with folders instead of using solution

files, so this enhancement to the .NET Core CLI tools wouldn’t really be

necessary. However, working with solutions instead of folders gives more

flexibility. You can create solution files that span multiple projects

independent of the folder structure, e.g. a solution that contains all API

services with their dependencies, and a different solution for the client

projects. Another solution can be created to contain client- and server

projects for a specific feature of the application. One project can be

contained in multiple solutions.

Passing the template name sln to dotnet new creates a solution file:

> dotnet new sln --name SampleSolution

The generated solution file SampleSolution.sln only contains global

definitions. From the content it’s clear this is geared toward Visual Studio:

Microsoft Visual Studio Solution File, Format Version 12.00

Visual Studio 15

VisualStudioVersion = 15.0.26124.0

MinimumVisualStudioVersion = 15.0.26124.0

Global

 GlobalSection(SolutionConfigurationPlatforms) = preSolution

 Debug|Any CPU = Debug|Any CPU

 Debug|x64 = Debug|x64

 Debug|x86 = Debug|x86

 Release|Any CPU = Release|Any CPU

 Release|x64 = Release|x64

 Release|x86 = Release|x86

 EndGlobalSection

 GlobalSection(SolutionProperties) = preSolution

 HideSolutionNode = FALSE

 EndGlobalSection

EndGlobal

To add and remove projects, the dotnet sln command can be used.

Here, the HelloWorld project is added to the solution SampleSolution. You

need to supply the filenames for the project. The solution file can be

omitted if the command is invoked from the same directory as the solution

file:

> dotnet sln SampleSolution.sln add HelloWorld\HelloWorld.csproj

Now the project is added as you can see in the solution file

SampleSolution.sln. A GUID uniquely identifies the project. This GUID is

used later in the file for the different configurations:

Microsoft Visual Studio Solution File, Format Version 12.00

Visual Studio 15

VisualStudioVersion = 15.0.26124.0

MinimumVisualStudioVersion = 15.0.26124.0

Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "HelloWorld",

 "HelloWorld\HelloWorld.csproj", "{03E79868-A4AB-4016-AE03-3CAA89C6542A}"

EndProject

Global

 GlobalSection(SolutionConfigurationPlatforms) = preSolution

 Debug|Any CPU = Debug|Any CPU

 Debug|x64 = Debug|x64

 Debug|x86 = Debug|x86

 Release|Any CPU = Release|Any CPU

 Release|x64 = Release|x64

 Release|x86 = Release|x86

 EndGlobalSection

 GlobalSection(SolutionProperties) = preSolution

 HideSolutionNode = FALSE

 EndGlobalSection

 GlobalSection(ProjectConfigurationPlatforms) = postSolution

 {03E79868-A4AB-4016-AE03-3CAA89C6542A}.Debug|Any CPU.ActiveCfg = Debug|Any CPU

 {03E79868-A4AB-4016-AE03-3CAA89C6542A}.Debug|Any CPU.Build.0 = Debug|Any CPU

 {03E79868-A4AB-4016-AE03-3CAA89C6542A}.Debug|x64.ActiveCfg = Debug|x64

 {03E79868-A4AB-4016-AE03-3CAA89C6542A}.Debug|x64.Build.0 = Debug|x64

 {03E79868-A4AB-4016-AE03-3CAA89C6542A}.Debug|x86.ActiveCfg = Debug|x86

 {03E79868-A4AB-4016-AE03-3CAA89C6542A}.Debug|x86.Build.0 = Debug|x86

 {03E79868-A4AB-4016-AE03-3CAA89C6542A}.Release|Any CPU.ActiveCfg = Release|Any CPU

 {03E79868-A4AB-4016-AE03-3CAA89C6542A}.Release|Any CPU.Build.0 = Release|Any CPU

 {03E79868-A4AB-4016-AE03-3CAA89C6542A}.Release|x64.ActiveCfg = Release|x64

 {03E79868-A4AB-4016-AE03-3CAA89C6542A}.Release|x64.Build.0 = Release|x64

 {03E79868-A4AB-4016-AE03-3CAA89C6542A}.Release|x86.ActiveCfg = Release|x86

 {03E79868-A4AB-4016-AE03-3CAA89C6542A}.Release|x86.Build.0 = Release|x86

 EndGlobalSection

EndGlobal

Other dotnet sln commands are remove to remove a project, and

list to list all projects for a solution.

Creating and using Libraries and
.NET Standard

To create libraries, you have some more options you can choose

from. When creating .NET Framework libraries, they can only be used

from .NET Framework applications such as WPF, Windows Forms

applications, or Web applications with ASP.NET.

This is similar with .NET Core libraries: when creating .NET Core

libraries, they can only be used from .NET Core applications. To create

libraries that can be used by multiple platforms, e.g. Silverlight, WPF,

Xamarin, and UWP, portable libraries were useful.

If you create a portable library, you need to specify the platform target

including the version number you need to support (see Figure 46-2). The

more options you select, and the older versions of these options, the less

APIs are available.

Figure 46-2

The APIs available need to be defined with a matrix. Every change of a

platform target changes APIs. When one platform is added to the list, it’s

not enough to add a simple list of APIs the platform supports. Thus, only

the smallest set of APIs available on each platform can be used. This is a

burden for Microsoft, and adds complexity creating portable libraries that

itself make use of portable libraries. You cannot reference another portable

library that targets a larger set of APIs than the library you are creating.

Now there’s a replacement for portable libraries - the .NET Standard.

Instead of having a matrix that defines the APIs available, with every

version of the .NET Standard only APIs are added, but none removed. So,

for Microsoft it’s a lot easier to define the standard, and it’s a lot easier to

work with it. Let’s get into more details on the .NET Standard, on creating

.NET Standard libraries, and on using legacy libraries with .NET Core.

.NET Standard

.NET Standard allows creating libraries that can be shared between

different platforms. Creating a library targeting .NET Standard 1.4 allows

using this library from .NET Core applications, with .NET Framework

4.6.1 and later, from the Universal Windows Platform (UWP),

Xamarin.Android 7.0, Xamarin.iOS 10.0, and Mono 4.6.

If Windows 8.1 needs to be supported, you can only use the APIs available

in the .NET Standard 1.2. The .NET Standard 1.2 is also supported by

.NET Framework 4.5.1.

The higher the version number of the .NET Standard, the more APIs are

available. The lower the version, the more platforms can use the library.

See https://docs.microsoft.com/en-

us/dotnet/articles/standard/library for a detailed list on

the .NET Standard support.

Note

For a complete list about what API is available on which platform, and

listed in which .NET Standard version, check https://apisof.net.

With this list, you can see for example that List<T> from the

System.Collections.Generic namespace is available in the .NET

Framework since 2.0, and with every other platform. It’s part of the .NET
Standard since 1.0. With .NET Core 1.0 and 1.1 it’s in version 4.0.10.0 of

the assembly System.Collections, and with .NET Core 2.0 the

System.Collections assembly changes to version 4.1.0.0. You can

also see the usage in apps. List<T> is used is used in 63.9% of apps

discovered from API Port Telemetry.

Note

The next version of the .NET Standard - .NET Standard 2.0 - defines
many APIs not available with .NET Core 1.1, but already available with
.NET Framework 4.6.1. .NET Core 2.0 will implement this standard as well.
This makes it easier to move existing .NET Framework applications to the
new world of .NET Core.

Creating .NET Standard Libraries

Using the command dotnet new, you can create .NET Standard

libraries, and .NET Core libraries. Invoking

> dotnet new lib

creates a library for the .NET Standard 1.4, as you can see from the project

file:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <TargetFramework>netstandard1.4</TargetFramework>

 </PropertyGroup>

</Project>

Setting the --framework option with the dotnet new lib

command, you can define any .NET Standard to use (netstandard1.0

to netstandard1.6), or build a library for .NET Core (with the options

netcoreapp1.0 and netcoreapp1.1).

Using Visual Studio 2017, in the project templates you have a Class

Library (.NET Standard) and a Class Library (.NET Core) available. With

the tab Application of the project settings, you can select your desired

target framework (see Figure 46-3).

Figure 46-3

Note

What’s the reason to build a .NET Core Library instead of a .NET
Standard Library? The .NET Standard includes APIs that are available on
every platform, are mature enough to not be updated frequently, and are
widely used. See the documentation about the .NET Standard Review
Body about the criteria for the APIs coming to the standard:
https://github.com/dotnet/standard/blob/master/docs/rev

iew-board/README.md. Contrary to that, new APIs are coming to .NET

Core first, before they will be available in a future version of the standard. If
you need to use APIs from your libraries that are only available for .NET
Core, create a .NET Core library. Be aware that this library can only be
used from .NET Core applications. Creating libraries that are supposed to
be used by as many platforms as possible, use the .NET Standard.

Using Legacy Libraries

Not all important NuGet packages are yet available for .NET

Standard. However, many of the packages still work with .NET Core and

.NET Standard projects. For example, you can put view-model types for a

WPF, UWP, and Xamarin app in a .NET Standard library (instead of using

a portable library). However, adding the NuGet package Prism.Core results

in a failing package restore with the error: Package restore failed. Rolling

back package changes. Getting into the details of the error in the Output

window of Visual Studio, you can see this information: Package

Prism.Core 6.3.0 is not compatible with netstandard1.4. Alongside this

error, you can also see a list of platforms that are supported by this package.

Among this list is a portable library with this identification: portable-

monoandroid10+monotouch10+net45+win+win81+wp8+wpa81+xamarin

ios10. You can use this identification, and assign it to the

PackageTargetFallback element.

Using this element, you can now add the NuGet package Prism.Core to the

library (file HelloLib/HelloLib.csproj):

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <TargetFramework>netstandard1.4</TargetFramework>

 <PackageTargetFallback>

 $(PackageTargetFallback);

 portable-monoandroid10+monotouch10+net45+win+win81+wp8+wpa81+xamarinios10

 </PackageTargetFallback>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference Include="Prism.Core" Version="6.3.0" />

 </ItemGroup>

</Project>

Note

Using the PackageTargetFallback element you let the NuGet

package manager ignore the dependency at let it do its work. If the
application can really work with this dependency - you need to test. When
all the NuGet packages moved to .NET Standard, this element is no longer
needed.

PackageTargetFallback is a replacement for the import element

from project.json.

Note

You can read more about view-models and the MVVM pattern in Chapter
31, “Patterns with XAML Apps.”

Unit Testing

Unit testing is a built-in feature of the .NET Core CLI tools. The two

testing frameworks coming out of the box are XUnit and MSTest.

A unit testing project using XUnit is created with the dotnet new

xunit command:

> dotnet new xunit

The generated project file contains references to

Microsoft.NET.Test.Sdk, xunit, and

xunit.runner.visualstudio (file

XunitTestSample/XUnitTestSample.csproj):

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <TargetFramework>netcoreapp1.1</TargetFramework>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.0.0" />

 <PackageReference Include="xunit" Version="2.2.0" />

 <PackageReference Include="xunit.runner.visualstudio" Version="2.2.0" />

 </ItemGroup>

</Project>

The template also creates a unit test with the Fact attribute (code file

XUnitTestSample/UnitTest1.cs):

public class UnitTest1

{

 [Fact]

 public void Test1()

 {

 }

}

After the test is written, the packages restored (dotnet restore), and

the test program built (dotnet build), you can run the test:

> dotnet test

Note

Microsoft is using XUnit as testing framework for .NET Core, because
MSTest was not ready for .NET Core when .NET Core was initially built -
but XUnit was.

To create unit tests with MSTest, you can use dotnet new mstest:

> dotnet new mstest

The result is similar to the XUnit sample. The generated project file just

contains references to MSTest - Microsoft.NET.Test.Sdk,

MSTest.TestAdapter, and MSTest.TestFramework (code file

MSTestSample/MSTestSample.csproj):

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <TargetFramework>netcoreapp1.1</TargetFramework>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.0.0" />

 <PackageReference Include="MSTest.TestAdapter" Version="1.1.11" />

 <PackageReference Include="MSTest.TestFramework" Version="1.1.11" />

 </ItemGroup>

</Project>

Attributes used by MSTest are TestClass and TestMethod (code file

MSTestSample/UnitTest1.cs):

[TestClass]

public class UnitTest1

{

 [TestMethod]

 public void TestMethod1()

 {

 }

}

The remaining process is the same, and the test runs with dotnet test.

Note

You can read more about unit tests in Chapter 19, “Testing.”

Using Tools

The .NET Core CLI tools can be enhanced. You’ve already seen

enhancements with custom templates for the dotnet new command, but

you can also add other commands. For example, the Entity Framework

Core team created custom commands for the migration, and the ASP.NET

team created commands for managing user secrets, and bundling of files.

Note

The code sample for adding Entity Framework Core tools and adding
user secrets is not in the source code download of this chapter. Instead,
you can find these samples with the Entity Framework Core samples in
Chapter 38 and the ASP.NET Core samples in Chapter 40.

Entity Framework Core Tools

To add tools to projects, you need to add

DotnetCliToolReference elements to the project file. For adding the

Entity Framework Core tools, reference the NuGet package

Microsoft.EntityFrameworkCore.Tools.Dotnet: (Chapter

38 project file
EntityFrameworkSamples/MenusSample/MenusSample.csp

roj):

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>netcoreapp1.1</TargetFramework>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference Include="Microsoft.EntityFrameworkCore"

 Version="1.1.1" />

 <PackageReference Include="Microsoft.EntityFrameworkCore.Design"

 Version="1.1.1" />

 <PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer"

 Version="1.1.1" />

 </ItemGroup>

 <ItemGroup>

 <DotNetCliToolReference

 Include="Microsoft.EntityFrameworkCore.Tools.DotNet" Version="1.0.0" />

 </ItemGroup>

</Project>

Note

Don’t be confused by the version number of the Entity Framework Core
tools. The sample code makes use of

Microsoft.EntityFrameworkCore version 1.1.1, but the tools

Microsoft.EntityFramework.Tools.Dotnet is at version 1.0.0.

The reason for this version mismatch is that the dotnet tools have just
been released, and the EF Core tools align to the versioning of the dotnet
tools. Most likely, the tools and .NET Core versioning will align within the
2.0 timeframe.

With the Entity Framework Core tools referenced from the project,

you can use the command dotnet ef. From here, the subcommands

database, dbcontext, and migrations are available. Adding EF

migrations to the MenuCards entity from the EF Core sample is done with

> dotnet ef migrations add InitMenuCards

The commands for the EF Core tools didn’t change with the release of the

tools.

Note

You can read more about the Entity Framework Core migration tools in
Chapter 38, “Entity Framework Core.”

User Secrets Tools

The tools to manage user secrets are installed to the project by

referencing Microsoft.Extensions.SecretManager.Tools

(Chapter 40 project file WebSampleApp/WebSampleApp.csproj):

<ItemGroup>

 <DotNetCliToolReference Include="Microsoft.Extensions.SecretManager.Tools"

 Version="1.0.0" />

</ItemGroup>

With this extension to the dotnet tools, you can invoke dotnet

user-secrets with the commands set, remove, list, and clear

to manage the user secrets.

Note

Read information about configuration with user secrets in Chapter 40,
“ASP.NET Core.”

Creating Packages

Using the dotnet pack command, and also using Visual Studio

2017, you can create NuGet packages.

Using the command line, similar to the other commands, the current

directory needs to be set to the directory where the csproj is placed. Invoke

the dotnet pack command for the HelloLib library to create a NuGet

package. With this command, the file HelloLib.1.0.0.nupkg is created in the

bin/debug directory. You can change the configuration with the

--configuration option, include PDB and source files with

--include-source, and include symbols with

--include-symbols.

Note

In case you need more options not directly available from the dotnet

pack command, you can pass parameters from the dotnet tools directly to

the MSBuild command. Check dotnet msbuild -h for more

information.

In Visual Studio 2017, with the project properties in the Package tab, you

can select the option Generate NuGet package on build to create the

package form Visual Studio, or select Pack form the context menu of the

project.

Publishing

.NET Core applications can be published as small packages

requiring the runtime already be installed on the target system (framework

dependent or portable deployment), or they can be installed self-

contained in which case the runtime does not need to be deployed on the

target system.

A framework dependent deployment has the advantage that multiple apps

can use the same .NET Core installation. This reduces the size of the app

and the overall disk size needed. However, you need to have the same

version of the runtime that’s used by the application installed on the

system. This requirement is similar to what we have with the .NET

Framework.

Note

.NET Core assemblies use a common PE file format for executables and
libraries which are independent of the operating system. This allows
running your .NET Core application on different platforms without the need
to compile multiple binaries. That’s why framework-dependent deployment
is also known as using a portable application.

On the other hand, self-contained applications have the advantage that the

.NET Core runtime does not need to be installed on the target system. The

runtime is distributed alongside the application. This increases the size of

the app and also increases the overall disk size needed on the system.

Framework Dependent Deployment

Let’s start with the default configuration - framework dependent or

portable deployment. Using this method, the runtime needs to be installed

on the target system. You can get the runtimes for the different platforms at

https://www.microsoft.com/net/download/core#/runtime.

To publish your app, you just need to run the command dotnet

publish. For the release build, start this command with the

--configuration option:

> dotnet publish --configuration Release

This command creates a publish subdirectory in the subdirectory

bin/Release/netcoreapp1.1/ containing a binary (with the DLL

file extension), a PDB file containing symbols for application analysis, and

a runtime configuration with runtimeOptions:

{

 "runtimeOptions": {

 "framework": {

 "name": "Microsoft.NETCore.App",

 "version": "1.1.1"

 }

 }

}

The command dotnet run is meant for development purposes only. To

run the application on the production system, you can invoke the dotnet

command passing the name of the executable:

> dotnet HelloWorld.dll

Instead of using the command line tools, you can use Build |

Publish from within Visual Studio 2017. With the dialog opened (see

Figure 46-4), you just need to click the Publish button. By clicking on

Settings, you can change the configuration, the target framework, and the

directory where the files should be published to (see Figure 46-5). With

Visual Studio, the runtime is listed as Portable for framework-dependent

deployments.

Figure 46-4

Figure 46-5

Self-Contained Applications

To create self-contained applications, you need to add

RuntimeIdentifiers to the project file. The executable to launch the

application, as well as well as the runtime that is included with the

application is different based on the platform. The following runtime

identifiers win10-x64, osx.10.11-x64, and Ubuntu.16.10-x64

are for 64-bit Windows 10, OS X 10.11, and Ubuntu 16.10 (project file

HelloWorldSelfContained/HelloWorld.csproj):

<PropertyGroup>

 <!-- ... -->

 <RuntimeIdentifiers>

 win10-x64;osx.10.11-x64;ubuntu.16.10-x64

 </RuntimeIdentifiers>

</PropertyGroup>

Note

To get a list of all available runtime identifiers, check
https://docs.microsoft.com/en-

us/dotnet/articles/core/rid-catalog for Windows, Red Hat,

Ubuntu, CentOS, Debian, Fedora, OpenSUSE, Oracle Linux and OS X.

Now you can create files for publishing using the --runtime option,

building binaries for every platform one after another:

> dotnet publish --runtime win10-x64 --configuration Release

> dotnet publish --runtime osx.10.11-x64 --configuration Release

> dotnet publish --runtime Ubuntu.16.10-x64 --configuration Release

After starting the dotnet publish command, you can find the files you

need to publish in
Release/{TargetFramework}/{RuntimeIdentifier}/publish

directories. Every one of these directories contains more than 100 files

needed for the application including its runtime.

To create publish files from Visual Studio 2017, you can use Build |

Publish after adding the runtime identifiers to the project file. The

Settings dialog of the Publish dialog now lists the available runtimes

specified within the project file as shown in Figure 46-6.

Figure 46-6

Migration from project.json

You might already have .NET Core projects with project.json project

files. Instead of creating the project files in the new format manually, you

can migrate these files to the new syntax either with the .NET Core CLI

tools or by using Visual Studio 2017. Both variants are covered in this

Chapter. Let’s start with the .NET Core CLI tools.

Migration with .NET Core CLI Tools

For the first migration, let’s copy the Entity Framework Core

samples from the vs2015 branch of Chapter 37 of the book. This solution

contains both .NET Framework as well as .NET Core projects. For a

migration, you just need to open the command prompt, set the current

directory to the directory of the solution, and start the command

> dotnet migrate EntityFrameworkSamples.sln

When using dotnet migrate without arguments, the current directory

is searched recursively for project.json files to migrate. Here, a

solution file was passed which results in migration of every project of the

solution, and the solution file is migrated as well. You can also specify a

global.json file which results in migration of every directory that is

defined in this file. To migrate just a single project, reference the

project.json file.

For every project that is migrated, you can see if the migration succeeded,

and finally such a summary like this is shown:

Summary

Total Projects: 7

Succeeded Projects: 7

Failed Projects: 0

The project migration has finished. Please visit https://aka.ms/coremigration

to report any issues you've encountered or ask for help.

Files backed up to

C:\githubvs2015\ProfessionalCSharp6\EntityFramework\EntityFrameworkSamples\back

up\

The generated backup directory contains the original files that have been

changed, so you can go back. Let’s have a look how the migration was

done. With the BooksSample, this is the original project.json:

containing references to the NuGet packages

Microsoft.EntityFrameworkCore and

Microsoft.EntityFrameworkCore.SqlServer, as well as

imports for dnxcore50 which was needed to reference older .NET Core

pre-released .NET Core libraries:

{

 "version": "1.0.0-*",

 "buildOptions": {

 "emitEntryPoint": true

 },

 "dependencies": {

 "Microsoft.EntityFrameworkCore": "1.0.1",

 "Microsoft.EntityFrameworkCore.SqlServer": "1.0.1"

 },

 "frameworks": {

 "netcoreapp1.0": {

 "imports": ["dnxcore50"],

 "dependencies": {

 "Microsoft.NETCore.App": {

 "type": "platform",

 "version": "1.0.1"

 }

 }

 }

 }

}

The generated project file BooksSample.csproj looks like this:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <TargetFramework>netcoreapp1.0</TargetFramework>

 <AssemblyName>BooksSample</AssemblyName>

 <OutputType>Exe</OutputType>

 <PackageId>BooksSample</PackageId>

 <PackageTargetFallback>$(PackageTargetFallback);dnxcore50

 </PackageTargetFallback>

 <RuntimeFrameworkVersion>1.0.4</RuntimeFrameworkVersion>

 <GenerateAssemblyTitleAttribute>false</GenerateAssemblyTitleAttribute>

 <GenerateAssemblyDescriptionAttribute>false

 </GenerateAssemblyDescriptionAttribute>

 <GenerateAssemblyConfigurationAttribute>false

 </GenerateAssemblyConfigurationAttribute>

 <GenerateAssemblyCompanyAttribute>false</GenerateAssemblyCompanyAttribute>

 <GenerateAssemblyProductAttribute>false</GenerateAssemblyProductAttribute>

 <GenerateAssemblyCopyrightAttribute>false

 </GenerateAssemblyCopyrightAttribute>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference Include="Microsoft.EntityFrameworkCore"

 Version="1.0.3" />

 <PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer"

 Version="1.0.3" />

 </ItemGroup>

</Project>

The version of the .NET Core as well as the NuGet packages can still be

updated - of course this was not done by the migration. You might decide

to stick with the LTS version, or to switch to the Current version of .NET

Core. LTS and Current versions have been covered in the section .NET

Core Versions and Microsoft’s Support earlier in this Chapter.

From the import element, the PackageTargetFallback element

gets generated. For this project, this fallback can be removed as all

referenced packages are now directly available for .NET Core. See the

section Use Legacy Libraries earlier in this Chapter for more information

on the PackageTargetFallback element.

The AssemblyName and the PackageId can be removed as well.

There’s a nice default if your project file has the same name as the

assembly.

The RuntimeFrameworkVersion element can be removed as well - if

you are fine with using the latest runtime version of the target framework

(TargetFramework element) that’s installed on your system which is

referenced from the Sdk attribute of the Project element. You just need

to specify a different RuntimeFrameworkVersion if your project

should use a specific runtime version.

Note

Check the folder

%ProgramFiles%\dotnet\shared\Microsoft.NetCore.App to see

which .NET Core runtime versions you’ve installed on your system.

All the elements starting with GeneratedAssembly… can be removed

as well - if you remove the file AssemblyInfo.cs with the assembly

attributes as was discussed in the section Project Metadata earlier in this

Chapter.

With the manual simplification, the update to .NET Core 1.1, and the

update of the referenced NuGet packages, the new version of the project

file looks like this:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <TargetFramework>netcoreapp1.1</TargetFramework>

 <AssemblyName>BooksSample</AssemblyName>

 <OutputType>Exe</OutputType>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference Include="Microsoft.EntityFrameworkCore"

 Version="1.1.1" />

 <PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer"

 Version="1.1.1" />

 </ItemGroup>

</Project>

Migration with Visual Studio 2017

With Visual Studio 2017 you just need to open a solution to start the

migration. As soon as you open a solution containing project.json files

you’ll see a dialog as shown in Figure 46-7. You see the One-way upgrade

with special mentioning that the migrated solution cannot be opened with

earlier versions of Visual Studio. Using this method, backup files are

created as well, so you’ve got a way back in case of any issues.

Figure 46-7

After the migration is completed, you can see the result as shown in Figure

46-8. The warning message for the solution contains information

concerning the compatibility of the solution with older versions of Visual

Studio. In order to work with csproj-based .NET Core projects, Visual

Studio 2017 or newer is required anyway. The information messages just

give an information about the backup of the original files, and successful

migrations. As you check the generated csproj files, you can convert the

files to use newer versions of .NET Core and update NuGet packages in the

same way as you’ve seen it with the command line tools. You just can use

the Application tab of the Project Properties to select the version of the

.NET Core framework, and use the NuGet Package Manager to update the

NuGet packages.

Figure 46-8

Summary

With the release of the .NET Core command line tools, .NET Core

moves into a more mature state - not only the framework is released, but

the tools as well. The source code of the applications doesn’t need to

change with the release of the tools, but the project files do need to be

updated.

You’ve seen that the migration is a smooth process either with dotnet

migrate or with using Visual Studio 2017 to change project.json

files to the XML format for csproj.

The .NET Core CLI tools changed their output, but the commands are very

similar to the preview versions. You’re using dotnet new, dotnet

restore, dotnet build, and dotnet run. Small but useful

changes happened such as the use of templates for dotnet new which

allow creating custom project templates. Behind the scenes of the .NET

Core CLI tools a lot has changed as the tools are now based on a shared

SDK component and MSBuild is used.

You’ve seen the features of the .NET Standard which makes Portable

Libraries obsolete with easier sharing of libraries between different .NET

platforms.

For publishing you’ve seen how can create framework dependent

deployments, and self-contained applications as well as their advantages

and disadvantages.

The next Chapter is about C# 7.0 - the new features of C# that changed

since C# 6 and can be used with Visual Studio 2017.

Author and Reviewers

Christian Nagel, https://csharp.christiannagel.com

Thanks to the reviewers Martin Ulrich and Istvan Novak

