
WHAT’S IN THIS CHAPTER?

➤ Understanding the architecture of the Composition framework
➤ Using attributes for composition
➤ Registering parts using conventions
➤ Defi ning contracts
➤ Exporting and importing parts
➤ Lazy loading of parts

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The Wrox.com code downloads for this chapter are found at www.wrox.com on the Download
Code tab. The source code is also available at https://github.com/ProfessionalCSharp/
ProfessionalCSharp7 in the directory Composition.

The code for this chapter is divided into the following major examples:

➤ Attribute-Based Sample
➤ Convention-Based Sample
➤ UWP UI Calculator

INTRODUCTION
Microsoft Composition is a framework for creating independency between parts and containers. Parts
can be used from containers without the need for the container to know the implementation or other
details. The container just needs a contract—for example, an interface to use a part.

Microsoft Composition can be used with different scenarios, such as a dependency injection con-
tainer, or you can even use it for adding functionality to an application after the application is
released by dynamically loading add-ins into the application. To get into these scenarios, you need a
foundation.

2 ❘ BONUS CHAPTER 1 COMPOSITION

For making development of apps easier, it’s a good practice to have separation of concerns (SoC). SoC is a
design principle for separating a program into different sections where each section has its own responsibil-
ity. Having different sections allows you to reuse and update these sections independently of each other.

Having a tight coupling between these sections or components makes it hard to reuse and update these com-
ponents independently of each other. Low coupling—for example, by using interfaces—helps this goal of
independence.

Using interfaces for coupling and allowing them to develop independent of any concrete implementation, is
known as the dependency injection design pattern. Dependency injection implements inversion of control
where the control to defi ne what implementation is used is reversed. The component for using an interface
receives the implementation via a property (property injection) or via a constructor (constructor injection).
Using a component just by an interface, it’s not necessary to know about the implementation. Different
implementations can be used for different scenarios—for example, with unit testing, a different implementa-
tion can be used that supplies test data.

Dependency injection can be implemented by using a dependency injection container. When you use a rr
dependency injection container, the container defi nes for what interface which implementation should be
used. Microsoft Composition can take the functionality of the container. This is one use case of this tech-
nology among the others.

NOTE Dependency injection is explained in detail in Chapter 20, “Dependency
Injection.” Chapter 20 shows the use of the dependency injection container
Microsoft.Framework.DependencyInjection.

Add-ins (or plug-ins) enable you to add functionality to an existing application. You can create a hosting
application that gains more and more functionality over time—such functionality might be written by your
team of developers, but different vendors can also extend your application by creating add-ins.

Today, add-ins are used with many different applications, such as Internet Explorer and Visual Studio.
Internet Explorer is a hosting application that offers an add-in framework that is used by many companies
to provide extensions when viewing web pages. The Shockwave Flash Object enables you to view web pages
with Flash content. The Google toolbar offers specifi c Google features that can be accessed quickly from
Internet Explorer. Visual Studio also has an add-in model that enables you to extend Visual Studio with
different levels of extensions. Visual Studio add-ins makes use of the Managed Extensibility Framework
(MEF), the fi rst version of Microsoft Composition.

For your custom applications, it has always been possible to create an add-in model to dynamically load and
use functionality from assemblies. However, all the issues associated with fi nding and using add-ins need to be
resolved. You can accomplish that automatically by using Microsoft Composition. This technology helps to cre-
ate boundaries and to remove dependencies between parts and the clients or callers that make use of the parts.

NOTE The fi rst version of Microsoft Composition was known as Microsoft
Extensibility Framework (MEF). MEF 1.x is still available with the full .NET
Framework in the namespace System.ComponentModel.Composition. The
new namespace for Microsoft Composition is System.Composition. Microsoft
Composition is available with NuGet packages.

MEF 1.x offers different catalogs—for example, an AssemblyCatalog or a
DirectoryCatalog—to fi nd types within an assembly or within a directory. The
new version of Microsoft Composition doesn’t offer this feature. However, you
can build this part on your own. Chapter 16, “Refl ection, Metadata, and Dynamic
Programming,” shows you how to load assemblies dynamically. You can use this
information to build your own directory catalog.

Architecture of the Composition Library ❘ 3

NOTE MEF (or Composition) has been available since .NET Framework 4.0 for cre-
ating add-ins with .NET. The .NET Framework offers another technology for writing
fl exible applications that load add-ins dynamically: the Managed Add-in Framework
(MAF). MAF has been available since .NET 3.5. MAF uses a pipeline for communica-
tion between the add-in and the host application that makes the development process
more complex but offers separation of add-ins via app domains or even different
processes. In that regard, Composition is the simpler of these technologies. MAF and
MEF can be combined to get the advantage of each, but it doubles the work. MAF was
not ported to .NET Core and is only available with the full framework.

The major namespace covered in this chapter is System.Composition.

ARCHITECTURE OF THE COMPOSITION LIBRARY
Microsoft Composition is built with parts and containers, as shown in Figure BC1-1. A container fi nds
parts that are exported and connects imports to exports, thereby making parts available to the hosting
application.

Host
Application

Container

Maps imports

ConnectsImport
Part
Export

Uses
Finds parts

Uses

FIGURE BC1-1

Here’s the full picture of how parts are loaded. As mentioned, parts are found with exports. Exports can be
defi ned using attributes, or with a fl uent API from C# code. Multiple export providers can be connected in
chains for customizing exports—for example, with a custom export provider to only allow parts for specifi c
users or roles. The container uses export providers to connect imports to exports and is itself an export
provider.

Microsoft Composition consists of the NuGet packages shown in the following table. However, you don’t
need to deal with all the specifi c packages. You can add a dependency to System.Composition that itself
references all these packages.

4 ❘ BONUS CHAPTER 1 COMPOSITION

NUGET PACKAGE DESCRIPTION

System.Composition.
AttributedModel

This NuGet package contains Export and Import attributes. This
package allows using attributes to export and import parts.

System.Composition.Convention With this NuGet package it’s possible to use plain old CLR
objects (POCO) as parts. Rules can be applied programmatically
to defi ne exports.

System.Composition.Runtime This NuGet package contains the runtime and thus is needed
from the hosting application. The class CompositionContext is
contained in this package. CompositionContext is an abstract
class that allows getting exports for the context.

System.Composition.Hosting This NuGet package contains the CompositionHost.
CompositionHost derives from the base class
CompositionContext and thus gives a concrete class to
retrieve exports.

System.Composition.TypedParts This NuGet package defi nes the class
ContainerConfiguration. With ContainerConfiguration
you can defi ne what assemblies and parts should be used
for exports. The class CompositionContextExtensions
defi nes the extension method SatisfyImports for the
CompositionContext to make it easy to match imports with
exports.

Composition Using Attributes
Let’s start with a simple example to demonstrate the Composition architecture. The hosting application can
load add-ins. With Microsoft Composition, an add-in is referred to as a part. Parts are defi ned as exports
and are loaded into a container that imports parts.

The sample code for AttributeBasedSample defi nes these dependencies and namespaces:

CalculatorContract (.NET Standard Class Library)

Namespace

System.Collections.Generic

SimpleCalculator (.NET Standard Class Library)

Dependencies

System.Compositon

CalculatorContract

Namespaces

System

System.Collections.Generic

System.Composition

AdvancedCalculator (.NET Standard Class Library)

Dependencies

System.Compositon

CalculatorContract

Architecture of the Composition Library ❘ 5

Namespaces

System

System.Collections.Generic

System.Composition

SimpleHost (Console App .NET Core)

Dependencies

CalculatorContract

System.Composition

Namespaces

System

System.Collections.Generic

System.Composition

System.Composition.Hosting

In this example, a Console App (.NET Core) is created to host calculator parts from a library. To cre-
ate independence from the host and the calculator part, three projects are required. One project,
CalculatorContract, holds the contracts that are used by both the add-in assembly and the hosting
executable. The project SimpleCalculator contains the part and implements the contract defi ned by the
contract assembly. The host uses the contract assembly to invoke the part.

The contracts in the assembly CalculatorContract are defi ned by two interfaces: ICalculator and
IOperation. The ICalculator interface defi nes the methods GetOperations and Operate. The
GetOperations method returns a list of all operations that the add-in calculator supports, and with the
Operate method an operation is invoked. This interface is fl exible in that the calculator can support dif-
ferent operations. If the interface defi ned Add and Subtract methods instead of the fl exible Operate
method, a new version of the interface would be required to support Divide and Multiply methods. With
the ICalculator interface as it is defi ned in this example, however, the calculator can offer any number
of operations with any number of operands (code fi le AttributeBasedSample/CalculatorContract/
ICalculator.cs):

public interface ICalculator
{
 IList<IOperation> GetOperations();
 double Operate(IOperation operation, double[] operands);
}

The ICalculator interface uses the IOperation interface to return the list of operations and to invoke an
operation. The IOperation interface defi nes the read-only properties Name and NumberOperands (code fi le
AttributeBasedSample/CalculatorContract/IOperation.cs):

public interface IOperation
{
 string Name { get; }
 int NumberOperands { get; }
}

The CalculatorContract .NET Standard library doesn’t require any reference to System.Composition
assemblies. Only simple .NET interfaces are contained within it.

The add-in assembly SimpleCalculator contains classes that implement the interfaces defi ned by the con-
tracts. The class Operation implements the interface IOperation. This class contains just two properties
as defi ned by the interface. The interface defi nes get accessors of the properties; internal set accessors are

6 ❘ BONUS CHAPTER 1 COMPOSITION

used to set the properties from within the assembly (code fi le AttributeBasedSample/SimpleCalculator/
Operation.cs):

public class Operation: IOperation
{
 public string Name { get; internal set; }
 public int NumberOperands { get; internal set; }
}

The Calculator class provides the functionality of this add-in by implementing the ICalculator
interface. The Calculator class is exported as a part as defi ned by the Export attribute. This attribute
is defi ned in the System.Composition namespace in the NuGet package System.Composition
.AttributedModel (code fi le AttributeBasedSample/SimpleCalculator/Calculator.cs):

[Export(typeof(ICalculator))]
public class Calculator: ICalculator
{
 public IList<IOperation> GetOperations() =>
 new List<IOperation>()
 {
 new Operation { Name="+", NumberOperands=2},
 new Operation { Name="-", NumberOperands=2},
 new Operation { Name="/", NumberOperands=2},
 new Operation { Name="*", NumberOperands=2}
 };

 public double Operate(IOperation operation, double[] operands)
 {
 double result = 0;
 switch (operation.Name)
 {
 case "+":
 result = operands[0] + operands[1];
 break;
 case "-":
 result = operands[0]—operands[1];
 break;
 case "/":
 result = operands[0] / operands[1];
 break;
 case "*":
 result = operands[0] * operands[1];
 break;
 default:
 throw new InvalidOperationException(
 $"invalid operation {operation.Name}");
 }
 return result;
 }
}

The hosting application is a Console App (.NET Core). The part uses an Export attribute to defi ne what is
exported; with the hosting application, the Import attribute defi nes what is used. Here, the Import attribute
annotates the Calculator property that sets and gets an object implementing ICalculator. Therefore,
any calculator add-in that implements this interface can be used here (code fi le AttributeBasedSample/
SimpleHost/Program.cs):

class Program
{
 [Import]
 public ICalculator Calculator { get; set; }
 //...
}

Architecture of the Composition Library ❘ 7

In the entry method Main of the console application, a new instance of the Program class is created, and
then the Bootstrapper method is invoked. In the Bootstrapper method, a ContainerConfiguration
is created. With the ContainerConfiguration, a fl uent API can be used to confi gure this object. The
method WithPart<Calculator> fi nds the exports of the Calculator class to have it available from the
composition host. The CompositionHost instance is created using the CreateContainer method of the
ContainerConfiguration (code fi le AttributeBasedSample/SimpleHost/Program.cs):

static void Main()
{
 var p = new Program();
 p.Bootstrapper();
 p.Run();
}

public void Bootstrapper()
{
 var configuration = new ContainerConfiguration()
 .WithPart<Calculator>();

 using (CompositionHost host = configuration.CreateContainer())
 {
 //...
 }
}

Besides using the method WithPart (which has overloads and generic versions as well as non-generic ver-
sions), you can also use WithParts to add a list of parts and use WithAssembly or WithAssemblies to add
the exports of an assembly.

Using the CompositionHost, you can access exported parts with the GetExport and GetExports methods:

You can also use more “magic.” Instead of specifying all the export types you need to access, you can use
the SatisfyImports method that is an extension method for the CompositionHost. The fi rst parameter
requires an object with imports. Because the Program class itself defi nes a property that has an Import
attribute applied, the instance of the Program class can be passed to the SatisfyImports method. After
invoking SatisfyImports, you will see that the Calculator property of the Program class is fi lled (code
fi le AttributeBasedSample/SimpleHost/Program.cs):

using (CompositionHost host = configuration.CreateContainer())
{
 host.SatisfyImports(this);
}

With the Calculator property, you can use the methods from the interface ICalculator. GetOperations
invokes the methods of the previously created add-in, which returns four operations. After asking the user
what operation should be invoked and requesting the operand values, the add-in method Operate is called:

public void Run()
{
 var operations = Calculator.GetOperations();
 var operationsDict = new SortedList<string, IOperation>();
 foreach (var item in operations)
 {
 Console.WriteLine($"Name: {item.Name}, number operands: " +
 $"{item.NumberOperands}");
 operationsDict.Add(item.Name, item);
 }
 Console.WriteLine();

 string selectedOp = null;
 do
 {

8 ❘ BONUS CHAPTER 1 COMPOSITION

 try
 {
 Console.Write("Operation? ");
 selectedOp =ReadLine();
 if (selectedOp.ToLower() == "exit" ||
 !operationsDict.ContainsKey(selectedOp))
 continue;

 var operation = operationsDict[selectedOp];
 double[] operands = new double[operation.NumberOperands];
 for (int i = 0; i < operation.NumberOperands; i++)
 {
 Console.Write($"\t operand {i + 1}? ");
 string selectedOperand = ReadLine();
 operands[i] = double.Parse(selectedOperand);
 }
 Console.WriteLine("calling calculator");
 double result = Calculator.Operate(operation, operands);
 Console.WriteLine($"result: {result}");
 }
 catch (FormatException ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine();
 continue;
 }
 } while (selectedOp != "exit");
}

The output of one sample run of the application is shown here:

Name: +, number operands: 2
Name: -, number operands: 2
Name: /, number operands: 2
Name: *, number operands: 2
Operation? +
operand 1? 3
operand 2? 5
calling calculator
result: 8
Operation? -
operand 1? 7
operand 2? 2
calling calculator
result: 5
Operation? exit

Without any code changes in the host application, it is possible to use a completely different library for
the parts. The project AdvancedCalculator defi nes a different implementation for the Calculator class
to offer more operations. You can use this calculator in place of the other one by referencing the project
AdvancedCalculator with the SimpleHost project.

Here, the Calculator class implements the additional operators %, ++, and -- (code fi le
AttributeBasedSample/AdvancedCalculator/Calculator.cs):

[Export(typeof(ICalculator))]
public class Calculator: ICalculator
{
 public IList<IOperation> GetOperations() =>
 new List<IOperation>()
 {
 new Operation { Name="+", NumberOperands=2},

Architecture of the Composition Library ❘ 9

 new Operation { Name="-", NumberOperands=2},
 new Operation { Name="/", NumberOperands=2},
 new Operation { Name="*", NumberOperands=2},
 new Operation { Name="%", NumberOperands=2},
 new Operation { Name="++", NumberOperands=1},
 new Operation { Name="—", NumberOperands=1}
 };

 public double Operate(IOperation operation, double[] operands)
 {
 double result = 0;
 switch (operation.Name)
 {
 case "+":
 result = operands[0] + operands[1];
 break;
 case "-":
 result = operands[0]—operands[1];
 break;
 case "/":
 result = operands[0] / operands[1];
 break;
 case "*":
 result = operands[0] * operands[1];
 break;
 case "%":
 result = operands[0] % operands[1];
 break;
 case "++":
 result = ++operands[0];
 break;
 case "—":
 result =—operands[0];
 break;
 default:
 throw new InvalidOperationException(
 $"invalid operation {operation.Name}");
 }
 return result;
 }
}

NOTE With the SimpleHost you can’t use both implementations of the Calculator
at one time. You need to remove the reference SimpleCalculator before using the
AdvancedCalculator, and the other way around. Later in this chapter, you see how
multiple exports of the same type can be used with one container.

Now you’ve seen imports, exports, and catalogs from the Composition architecture. In case you want to use
existing classes where you can’t add an attribute with Composition, you can use convention-based part reg-
istration, which is shown in the next section.

Convention-Based Part Registration
Convention-based registration not only allows exporting parts without using attributes, it also gives you
more options to defi ne what should be exported—for example, using naming conventions such as the class
name ends with PlugIn, or ViewModel, or using the suffi x name Controller to fi nd all controllers.

10 ❘ BONUS CHAPTER 1 COMPOSITION

This introduction to convention-based part registration builds the same example code shown previously
using attributes, but attributes are no longer needed; therefore, the same code is not repeated here. The same
contract interfaces ICalculator and IOperation are implemented, and nearly the same part with the class
Calculator. The difference with the Calculator class is that it doesn’t have the Export attribute applied
to it.

The solution ConventionBasedSample contains the following projects with these references and
namespaces. With the SimpleCalculator project, a NuGet package for Microsoft Composition is not
needed, as exports are not defi ned by this project.

CalculatorContract (Class Library .NET Standard)

Namespace

System.Collections.Generic

SimpleCalculator (Class Library .NET Standard)

Dependency

CalculatorContract

Namespaces

System

System.Collections.Generic

System.Composition

SimpleHost (Console App .NET Core)

Dependencies

CalculatorContract

System.Composition

Namespaces

System

System.Collections.Generic

System.Composition

System.Composition.Hosting

NOTE You need to create a directory c:/addins before compiling the solution.
The hosting application of this sample solution loads assemblies from the direc-
tory c:/addins. That’s why a post-build command is defi ned with the project
SimpleCalculator to copy the library to the c:/addins directory.

When you create the host application, all this becomes more interesting. Like before, a property of type
ICalculator is created as shown in the following code snippet—it just doesn’t have an Import attribute
applied to it (code fi le ConventionBasedSample/SimpleHost/Program.cs):

public ICalculator Calculator { get; set; }

You can apply the Import attribute to the property Calculator and use only conventions for the exports. You
can mix this, using conventions only with exports or imports, or with both—as shown in this example.

Architecture of the Composition Library ❘ 11

The Main method of the Program class looks like before; a new instance of Program is created, and because
the Calculator property is an instance property of this class, the Bootstrap and Run methods are invoked
(code fi le ConventionBasedSample/SimpleHost/Program.cs):

public static void Main()
{
 var p = new Program();
 p.Bootstrap();
 p.Run();
}

The Bootstrap method now creates a new ConventionBuilder. ConventionBuilder derives from the
base class AttributedModelBuilder; thus, it can be used everywhere this base class is needed. Instead of
using the Export attribute, convention rules are defi ned for types that derive from ICalculator to export
ICalculator with the methods ForTypesDerivedFrom and Export. ForTypesDerivedFrom returns a
PartConventionBuilder, which allows using the fl uent API to continue with the part defi nition to invoke
the Export method on the part type. Instead of using the Import attribute, the convention rule for the
Program class is used to import a property of type ICalculator. The property is defi ned using a lambda
expression (code fi le ConventionBasedSample/SimpleHost/Program.cs):

public void Bootstrap()
{
 var conventions = new ConventionBuilder();
 conventions.ForTypesDerivedFrom<ICalculator>()
 .Export<ICalculator>();
 conventions.ForType<Program>()
 .ImportProperty<ICalculator>(p => p.Calculator);
 //...
}

After the convention rules are defi ned, the ContainerConfiguration class is instantiated. With the
container confi guration to use the conventions defi ned by the ConventionsBuilder, the method
WithDefaultConventions is used. WithDefaultConventions requires any parameter that derives from
the base class AttributedModelProvider, which is the class ConventionBuilder. After defi ning to
use the conventions, you could use the WithPart method like before to specify the part or parts where
the conventions should be applied. For making this more fl exible than before, now the WithAssemblies
method is used to specify the assemblies that should be applied. All the assemblies that are passed to this
method are fi ltered for types that derive from the interface ICalculator to apply the export. After the
container confi guration is in place, the CompositionHost is created like in the previous sample (code fi le
ConventionBasedSample/SimpleHost/Program.cs):

public void Bootstrap()
{
 //...
 var configuration = new ContainerConfiguration()
 .WithDefaultConventions(conventions)
 .WithAssemblies(GetAssemblies("c:/addins"));

 using (CompositionHost host = configuration.CreateContainer())
 {
 host.SatisfyImports(this, conventions);
 }
}

The GetAssemblies method loads all assemblies from the given directory (code fi le
ConventionBasedSample/SimpleHost/Program.cs):

private IEnumerable<Assembly> GetAssemblies(string path)
{

12 ❘ BONUS CHAPTER 1 COMPOSITION

 IEnumerable<string> files = Directory.EnumerateFiles(path, "*.dll");
 var assemblies = new List<Assembly>();
 foreach (var file in files)
 {
 Assembly assembly = Assembly.LoadFile(file);
 assemblies.Add(assembly);
 }
 return assemblies;
}

As you’ve seen, the ConventionBuilder is the heart of convention-based part registration and Microsoft
Composition. It uses a fl uent API and offers all the fl exibility you’ll see with attributes as well. Conventions
can be applied to a specifi c type with ForType; or for types that derive from a base class or implement an
interface, ForTypesDerivedFrom. ForTypesMatching enables specifying a fl exible predicate. For example,
ForTypesMatching(t => t.Name.EndsWith("ViewModel")) applies a convention to all types that end
with the name ViewModel.

The methods to select the type return a PartBuilder. With the PartBuilder, exports and imports can be
defi ned, as well as metadata applied. The PartBuilder offers several methods to defi ne exports: Export
to export a specifi c type, ExportInterfaces to export a list of interfaces, and ExportProperties to
export properties. Using the export methods to export multiple interfaces or properties, a predicate can
be applied to further defi ne a selection. The same applies to importing properties or constructors with
ImportProperty, ImportProperties, and SelectConstructors.

Now that we have briefl y looked at the two ways of using Microsoft Composition with attributes and con-
ventions, the next section digs into the details by using Windows applications to host parts.

DEFINING CONTRACTS
The following sample application extends the fi rst one. The hosting application is a UWP (Universal
Windows Platform) app that loads calculator parts for calculation functionality; other add-ins bring their
own user interfaces into the host.

NOTE For more information about writing UWP applications, see Chapters 33 to 36.

The UICalculator is a somewhat bigger solution, at least for a book. It demonstrates using Microsoft
Composition with UWP. Of course, you can focus on one of these technologies, and use this framework
from other applications, such as WPF or Windows Forms.

The projects and their dependencies of the solution are shown in Figure BC1-2. The UWPCalculatorHost
project loads and manages parts. This project contains two types of parts. Parts without a user interface,
and parts with UWP user interfaces. SimpleCalculator is a part like the one you’ve seen before. This part
implements methods for calculations. What’s different from the earlier calculation sample is that this part
makes use of another part: AdvancedOperations. A part itself can make use of parts. Parts with XAML
user interfaces are FuelEconomy and TemperatureConversion.

Defi ning Contracts ❘ 13

FIGURE BC1-2

You need the following projects with dependencies and namespaces:

CalculatorContract (Class Library .NET Standard)

Namespace

System.Collections.Generic

CalculatorUtils (Class Library .NET Standard)

Dependency

System.Composition

Namespaces

System

System.Collections.Generic

System.ComponentModel

System.Composition

System.Runtime.CompilerServices

System.Windows.Input

14 ❘ BONUS CHAPTER 1 COMPOSITION

SimpleCalculator (Class Library .NET Standard)

Dependency

System.Composition

Namespaces

System

System.Collections.Generic

System.Composition

AdvancedOperations (Class Library .NET Standard)

Dependency

System.Composition

Namespaces

System.Composition

System.Threading.Tasks

Fuel Economy and Temp. Conversion (Class Library Universal Windows)

Dependency

System.Composition

Namespaces

System.Collections.Generic

System.Composition

Windows.UI.Xaml.Controls

Calculator View Models (Class Library .NET Standard)

Dependency

System.Composition

Namespaces

System

System.Collections.Generic

System.Collections.ObjectModel

System.Composition

System.Composition.Hosting

System.Linq

System.Windows.Input

UWP Calculator Host (UWP Application)

Dependencies

CalculatorContract

CalculatorUtils

CalculatorViewModels

FuelEconomy

Defi ning Contracts ❘ 15

SimpleCalculator

System.Composition

TemperatureConversion

Namespaces

System

Windows.ApplicationModel

Windows.ApplicationModel.Activation

Windows.UI.Xaml

Windows.UI.Xaml.Controls

Windows.UI.Xaml.Navigation

For the calculation, the same contracts that were defi ned earlier are used: ICalculator and IOperation.
Added to this example is another contract: ICalculatorExtension. This interface defi nes the UI property
that can be used by the hosting application. The get accessor of this property returns a FrameworkElement.
The property type is defi ned to be of type object to support UWP and other UI technologies with this
interface. For example, with WPF, the FrameworkElement is defi ned in the namespace System.Windows;
with UWP it’s in the namespace Windows.UI.Xaml. Defi ning the property of type object also doesn’t require
adding UWP dependencies to the library.

The UI property enables the add-in to return any user interface element that derives from
FrameworkElement to be shown as the user interface within the host application (code fi le UICalculator/
CalculatorContract/ICalculatorExtension.cs):

public interface ICalculatorExtension
{
 object UI { get; }
}

.NET interfaces are used to remove the dependency between one that implements the interface and one
that uses it. This way, a .NET interface is also a good contract for Composition to remove a dependency
between the hosting application and the add-in. If the interface is defi ned in a separate assembly, as with
the CalculatorContract assembly, the hosting application and the add-in don’t have a direct dependency.
Instead, the hosting application and the add-in just reference the contract assembly.

From a Composition standpoint, an interface contract is not required at all. The contract can be a simple
string. To avoid confl icts with other contracts, the name of the string should contain a namespace name—
for example, Wrox.ProCSharp.Composition.SampleContract, as shown in the following code snippet.
Here, the class Foo is exported by using the Export attribute, and a string passed to the attribute instead of
the interface:

[Export("Wrox.ProCSharp.Composition.SampleContract")]
public class Foo
{
 public string Bar()
 {
 return "Foo.Bar";
 }
}

The problem with using a contract as a string is that the methods, properties, and events provided by the
type are not strongly defi ned. Either the caller needs a reference to the type Foo to use it, or .NET refl ection
can be used to access its members. The C# dynamic keyword makes refl ection easier to use and can be very
helpful in such scenarios.

16 ❘ BONUS CHAPTER 1 COMPOSITION

The hosting application can use the dynamic type to import a contract with the name Wrox.ProCSharp
.Composition.SampleContract:

[Import("Wrox.ProCSharp.MEF.SampleContract")]
public dynamic Foo { get; set; }

With the dynamic keyword, the Foo property can now be used to access the Bar method directly. The call to
this method is resolved during runtime:

string s = Foo.Bar();

Contract names and interfaces can also be used in conjunction to defi ne that the contract is used only if
both the interface and the contract name are the same. This way, you can use the same interface for different
contracts.

NOTE The dynamic type is explained in Chapter 16, “Refl ection, Metadata, and
Dynamic Programming.”

EXPORTING PARTS
The previous example showed the part SimpleCalculator, which exports the type Calculator with
all its methods and properties. The following example contains the SimpleCalculator as well, with the
same implementation that was shown previously; and two more parts, TemperatureConversion and
FuelEconomy, are exported. These parts offer a UI for the hosting application.

Creating Parts
The Class Library Universal Windows named TemperatureConversion defi nes a user interface as shown in
Figure BC1-3. This control provides conversion between Celsius, Fahrenheit, and Kelvin scales. You use the
fi rst and second combo box to select the conversion source and target. Clicking the Calculate button starts
the calculation to do the conversion.

FIGURE BC1-3

The user control has a simple implementation for temperature conversion. The enumeration
TempConversionType defi nes the different conversions that are possible with that control. The enu-
meration values shown in the two combo boxes are bound to the TemperatureConversionTypes prop-
erty in the TemperatureConversionViewModel. The method ToCelsiusFrom converts the argument
t from its original value to Celsius. The temperature source type is defi ned with the second argument,

Exporting Parts ❘ 17

TempConversionType. The method FromCelsiusTo converts a Celsius value to the selected temperature
scale. The method OnCalculate is assigned to the Calculate command and invokes the ToCelsiusFrom
and FromCelsiusTo methods to do the conversion according to the user’s selected conversion type (code fi le
TemperatureConversion/TemperatureConversionViewModel.cs):

public enum TempConversionType
{
 Celsius,
 Fahrenheit,
 Kelvin
}

public class TemperatureConversionViewModel: Observable
{
 public TemperatureConversionViewModel()
 {
 CalculateCommand = new RelayCommand(OnCalculate);
 }

 public RelayCommand CalculateCommand { get; }

 public IEnumerable<string> TemperatureConversionTypes =>
 Enum.GetNames(typeof(TempConversionType));

 private double ToCelsiusFrom(double t, TempConversionType conv)
 {
 switch (conv)
 {
 case TempConversionType.Celsius:
 return t;
 case TempConversionType.Fahrenheit:
 return (t—32) / 1.8;
 case TempConversionType.Kelvin:
 return (t—273.15);
 default:
 throw new ArgumentException("invalid enumeration value");
 }
 }

 private double FromCelsiusTo(double t, TempConversionType conv)
 {
 switch (conv)
 {
 case TempConversionType.Celsius:
 return t;
 case TempConversionType.Fahrenheit:
 return (t * 1.8) + 32;
 case TempConversionType.Kelvin:
 return t + 273.15;
 default:
 throw new ArgumentException("invalid enumeration value");
 }
 }

 private string _fromValue;
 public string FromValue
 {
 get => _fromValue;
 set => SetProperty(ref _fromValue, value);
 }

 private string _toValue;

18 ❘ BONUS CHAPTER 1 COMPOSITION

 public string ToValue
 {
 get => _toValue;
 set => SetProperty(ref _toValue, value);
 }

 private string _fromType;
 public string FromType
 {
 get => _fromType;
 set => SetProperty(ref _fromType, value);
 }

 private string _toType;
 public string ToType
 {
 get => _toType;
 set => SetProperty(ref _toType, value);
 }

 public void OnCalculate()
 {
 double celsius = ToCelsiusFrom(double.Parse(FromValue),
 Enum.Parse<TempConversionType>(FromType));
 double result = FromCelsiusTo(celsius,
 Enum.Parse<TempConversionType>(ToType));
 ToValue = result.ToString();
 }
}

So far, this control is just a simple user interface control with a view model. To create a part, the class
TemperatureCalculatorExtension is exported by using the Export attribute. The class implements the
interface ICalculatorExtension to return the user control TemperatureConversion from the UI prop-
erty (code fi le UICalculator/TemperatureConversion/TemperatureCalculatorExtension.cs):

[Export(typeof(ICalculatorExtension))]
[CalculatorExtensionMetadata(
 Title = "Temperature",
 Description = "Temperature conversion",
 ImageUri = "ms-appx:///TemperatureConversion/Images/Temperature.png")]
public class TemperatureConversionExtension: ICalculatorExtension
{
 private object _control;
 public object UI =>
 _control ?? (_control = new TemperatureConversionUC());
}

For now, ignore the CalculatorExtensionMetadata attribute used in the previous code snippet. It is
explained in the section “Exporting Metadata” later in this chapter.

The second user control that implements the interface ICalculatorExtension is FuelEconomy. With
this control, either miles per gallon or liters per 100 km can be calculated. The user interface is shown in
Figure BC1-4.

Exporting Parts ❘ 19

FIGURE BC1-4

The next code snippet shows the class FuelEconomyViewModel, which defi nes several properties that
are bound from the user interface, such as a list of FuelEcoTypes that enables the user to select between
miles and kilometers, and the Fuel and Distance properties, which are fi lled by the user (code fi le
UICalculator/FuelEconomyShared/FuelEconomyViewModel.cs):

public class FuelEconomyViewModel: Observable
{
 public FuelEconomyViewModel()
 {
 InitializeFuelEcoTypes();
 CalculateCommand = new RelayCommand(OnCalculate);
 }

 public RelayCommand CalculateCommand { get; }

 //...

 public List<FuelEconomyType> FuelEcoTypes { get; } =
 new List<FuelEconomyType>();

 private void InitializeFuelEcoTypes()
 {
 var t1 = new FuelEconomyType
 {
 Id = "lpk",
 Text = "L/100 km",
 DistanceText = "Distance (kilometers)",
 FuelText = "Fuel used (liters)"
 };
 var t2 = new FuelEconomyType
 {
 Id = "mpg",
 Text = "Miles per gallon",
 DistanceText = "Distance (miles)",
 FuelText = "Fuel used (gallons)"
 };

20 ❘ BONUS CHAPTER 1 COMPOSITION

 FuelEcoTypes.AddRange(new FuelEconomyType[] { t1, t2 });
 }

 private FuelEconomyType _selectedFuelEcoType;
 public FuelEconomyType SelectedFuelEcoType
 {
 get => _selectedFuelEcoType;
 set => SetProperty(ref _selectedFuelEcoType, value);
 }

 private string _fuel;
 public string Fuel
 {
 get => _fuel;
 set => SetProperty(ref _fuel, value);
 }

 private string _distance;
 public string Distance
 {
 get => _distance;
 set => SetProperty(ref _distance, value);
 }

 private string _result;
 public string Result
 {
 get => _result;
 set => SetProperty(ref _result, value);
 }
}

NOTE The base class Observable that is used with the sample code offers an imple-
mentation of the interface INotifyPropertyChanged. This class is found in the
CalculatorUtils project.

The calculation is within the OnCalculate method. OnCalculate is invoked via the Command assignment of
the Calculate button (code fi le FuelEconomy/FuelEconomyViewModel.cs):

public void OnCalculate()
{
 double fuel = double.Parse(Fuel);
 double distance = double.Parse(Distance);
 FuelEconomyType ecoType = SelectedFuelEcoType;
 double result = 0;
 switch (ecoType.Id)
 {
 case "lpk":
 result = fuel / (distance / 100);
 break;
 case "mpg":
 result = distance / fuel;
 break;
 default:
 break;
 }
 Result = result.ToString();
}

Exporting Parts ❘ 21

Again, the interface ICalculatorExtension is implemented and exported with the Export attribute (code
fi le FuelEconomy/FuelCalculatorExtension.cs):

[Export(typeof(ICalculatorExtension))]
[CalculatorExtensionMetadata(
 Title = "Fuel Economy",
 Description = "Calculate fuel economy",
 ImageUri = "ms-appx:///FuelEconomy/Images/Fuel.png")]
public class FuelCalculatorExtension: ICalculatorExtension
{
 private object _control;
 public object UI => _control ?? (_control = new FuelEconomyUC());
}

Before continuing the hosting applications to import the user controls, let’s look at what other options
you have with exports. A part itself can import other parts, and you can add metadata information to the
exports.

Parts Using Parts
The Calculator class now doesn’t directly implement the Add and Subtract methods but uses other parts
that do this. To defi ne parts that offer a single operation, the interface IBinaryOperation is defi ned (code
fi le CalculatorContract/IBinaryOperation.cs):

public interface IBinaryOperation
{
 double Operation(double x, double y);
}

The class Calculator defi nes a property where a matching part of the Subtract method will be
imported. The import is named Subtract, as not all exports of IBinaryOperation are needed—just
the exports named Subtract (code fi le SimpleCalculator/Calculator.cs):

[Import("Subtract")]
public IBinaryOperation SubtractMethod { get; set; }

The Import in the class Calculator matches the Export of the SubtractOperation (code fi le
AdvancedOperations/Operations.cs):

[Export("Subtract", typeof(IBinaryOperation))]
public class SubtractOperation: IBinaryOperation
{
 public double Operation(double x, double y) => x - y;
}

Now only the implementation of the Operate method of the Calculator class needs to be changed to make
use of the inner part. There’s no need for the Calculator itself to create a container to match the inner part.
This is already automatically done from the hosting container if the exported parts are available within the
registered types or assemblies (code fi le SimpleCalculator/Calculator.cs):

public double Operate(IOperation operation, double[] operands)
{
 double result = 0;
 switch (operation.Name)
 {
 //...
 case "-":
 result = SubtractMethod.Operation(operands[0], operands[1]);
 break;
 //...
}

22 ❘ BONUS CHAPTER 1 COMPOSITION

Exporting Metadata
With exports, you can also attach metadata information. Metadata enables you to provide information in
addition to a name and a type. This can be used to add capability information and to determine, on the
import side, which of the exports should be used.

The Calculator class uses an inner part not only for the Subtract method, but also for the Add method. The
AddOperation from the following code snippet uses the Export attribute named Add in conjunction with the
SpeedMetadata attribute. The SpeedMetadata attribute specifi es the Speed information Speed.Fast (code
fi le AdvancedOperations/Operations.cs):

[Export("Add", typeof(IBinaryOperation))]
[SpeedMetadata(Speed = Speed.Fast)]
public class AddOperation: IBinaryOperation
{
 public double Operation(double x, double y) => x + y;
}

There’s another export for an Add method with SpeedMetadata Speed.Slow (code fi le
AdvancedOperations/Operations.cs):

[Export("Add", typeof(IBinaryOperation))]
[SpeedMetadata(Speed = Speed.Slow)]
public class SlowAddOperation: IBinaryOperation
{
 public double Operation(double x, double y)
 {
 Task.Delay(3000).Wait();
 return x + y;
 }
}

Speed is just an enumeration with two values (code fi le CalculatorUtils/SpeedMetadata.cs):

public enum Speed
{
 Fast,
 Slow
}

You can defi ne metadata by creating an attribute class with the MetadataAttribute applied. This attribute
is then applied to a part as you’ve seen with the AddOperation and SlowAddOperation types (code fi le
CalculatorUtils/SpeedMetadataAttribute.cs):

[MetadataAttribute]
[AttributeUsage(AttributeTargets.Class)]
public class SpeedMetadataAttribute: Attribute
{
 public Speed Speed { get; set; }
}

NOTE For more information about how to create custom attributes, read Chapter 16.

To access the metadata with the import, the class SpeedMetadata is defi ned. SpeedMetadata defi nes the
same properties as the SpeedMetadataAttribute (code fi le CalculatorUtils/SpeedMetadata.cs):

public class SpeedMetadata
{
 public Speed Speed { get; set; }
}

Exporting Parts ❘ 23

With multiple Add exports defi ned, using the Import attribute as shown previously fails during run-
time. Multiple exports cannot match just one import. The attribute ImportMany is used if more than one
export of the same name and type is available. This attribute is applied to a property of type array or
IEnumeration<T>.

Because metadata is applied with the export, the type of the property that matches the Add export is an
array of Lazy<IBinaryOperation, SpeedMetadata> (code fi le SimpleCalculator/Calculator.cs):

[ImportMany("Add")]
public Lazy<IBinaryOperation, SpeedMetadata>[] AddMethods { get; set; }

ImportMany is explained with more detail in the next section. The Lazy type allows accessing metadata
with the generic defi nition Lazy<T, TMetadata>. The class Lazy<T> is used to support lazy initialization of
types on fi rst use. Lazy<T, TMetadata> derives from Lazy<T> and supports, in addition to the base class,
access to metadata information with the Metadata property.

The call to the Add method is now changed to iterate through the collection of Lazy<IBinaryOperation,
SpeedMetadata> elements. With the Metadata property, the key for the capability is checked; if the Speed
capability has the value Speed.Fast, the operation is invoked by using the Value property of Lazy<T> to
invoke the operation (code fi le SimpleCalculator/Calculator.cs):

public double Operate(IOperation operation, double[] operands)
{
 double result = 0;
 switch (operation.Name)
 {
 case "+":
 foreach (var addMethod in AddMethods)
 {
 if (addMethod.Metadata.Speed == Speed.Fast)
 {
 result = addMethod.Value.Operation(operands[0], operands[1]);
 }
 }
 break;
 //...

Using Metadata for Lazy Loading
Using metadata with Microsoft Composition is not only useful for selecting parts based on metadata infor-
mation. Another great use is providing information to the host application about the part before the part is
instantiated.

The following example is implemented to offer a title, a description, and a link to an image for the
calculator extensions FuelEconomy and TemperatureConversion (code fi le CalculatorUtils/
CalculatorExtensionMetadataAttribute.cs):

[MetadataAttribute]
[AttributeUsage(AttributeTargets.Class)]
public class CalculatorExtensionMetadataAttribute: Attribute
{
 public string Title { get; set; }
 public string Description { get; set; }
 public string ImageUri { get; set; }
}

With a part, the CalculatorExtensionMetadata attribute is applied. The following is an example—the
FuelCalculatorExtension (code fi le FuelEconomy/FuelCalculatorExtension.cs):

[Export(typeof(ICalculatorExtension))]
[CalculatorExtensionMetadata(
 Title = "Fuel Economy",

24 ❘ BONUS CHAPTER 1 COMPOSITION

 Description = "Calculate fuel economy",
 ImageUri = "ms-appx:///FuelEconomy/Images/Fuel.png")]
public class FuelCalculatorExtension: ICalculatorExtension
{
 private object _control;
 public object UI => _control ?? (_control = new FuelEconomyUC());
}

Parts can consume a large amount of memory. If the user does not instantiate the part, there’s no need to
consume this memory. Instead, the title, description, and image can be accessed to give the user information
about the part before instantiating it.

IMPORTING PARTS
Now let’s look at using the parts with a hosting application. For the calculator part that only offers func-
tionality, UWP needs to add a user interface. For the other parts with a user interface, just the panels that
load this user interface are needed.

The design view of the UWP user control for the calculator part is shown in Figure BC1-5.

FIGURE BC1-5

For every part type, a separate import, manager, and view model is created. For using the part implementing
the ICalculator interface, the CalculatorImport is used to defi ne the Import, the CalculatorManager
is used to create the CompositionHost and load the parts, and the CalculatorViewModel is used to defi ne
the properties and commands that are bound to the user interface. For using the part implementing the
ICalculatorExtension interface, the CalculatorExtensionImport, CalculatorExtensionManager,
and CalculatorExtensionViewModel are defi ned accordingly.

Let’s start with the CalculatorImport class. With the fi rst sample, just a property has been defi ned
with the Program class to import a part. It’s a good practice to defi ne a separate class for imports. With
this class, you can also defi ne a method that is annotated with the attribute OnImportsSatisfied.
This attribute marks the method that is called when imports are matched. In the sample code, the event
ImportsSatisfied is fi red. The Calculator property has the Import attribute applied. Here, the type is
Lazy<ICalculator> for late instantiation. The part is instantiated only when the Value of the Lazy type is
accessed (code fi le CalculatorViewModels/CalculatorImport.cs):

public class CalculatorImport
{
 public event EventHandler<ImportEventArgs> ImportsSatisfied;

 [Import]
 public Lazy<ICalculator> Calculator { get; set; }

Importing Parts ❘ 25

 [OnImportsSatisfied]
 public void OnImportsSatisfied()
 {
 ImportsSatisfied?.Invoke(this,
 new ImportEventArgs
 {
 StatusMessage = "ICalculator import successful"
 });
 }
}

The CalculatorManager class instantiates the CalculatorImport class in the constructor. With
the InitializeContainer method, the ContainerConfiguration class is instantiated to create the
CompositionHost container with the types passed to the method. The method SatisfyImports matches
exports to imports (code fi le CalculatorViewModels/CalculatorManager.cs):

public class CalculatorManager
{
 private CalculatorImport _calcImport;
 public event EventHandler<ImportEventArgs> ImportsSatisfied;

 public CalculatorManager()
 {
 _calcImport = new CalculatorImport();
 _calcImport.ImportsSatisfied += (sender, e) =>
 {
 ImportsSatisfied?.Invoke(this, e);
 };
 }

 public void InitializeContainer(params Type[] parts)
 {
 var configuration = new ContainerConfiguration().WithParts(parts);
 using (CompositionHost host = configuration.CreateContainer())
 {
 host.SatisfyImports(_calcImport);
 }
 }
 //...
}

The GetOperators method of the CalculatorManager invokes the GetOperations method of the
Calculator. This method is used to display all the available operators in the user interface. As soon
as a calculation is defi ned, the InvokeCalculator method is invoked to pass the operation and oper-
ands, and in turn invoke the Operate method in the calculator (code fi le CalculatorViewModels/
CalculatorManager.cs):

public class CalculatorManager
{
 //...
 public IEnumerable<IOperation> GetOperators() =>
 _calcImport.Calculator.Value.GetOperations();

 public double InvokeCalculator(IOperation operation, double[] operands) =>
 _calcImport.Calculator.Value.Operate(operation, operands);
}

What’s needed by the CalculatorViewModel? This view model defi nes several properties: the
CalcAddInOperators property to list available operators, the Input property that contains the calculation
entered by the user, the Result property that shows the result of the operation, and the CurrentOperation
property that contains the current operation. It also defi nes the _currentOperands fi eld that contains
the operands selected. With the Init method, the container is initialized, and operators are retrieved

26 ❘ BONUS CHAPTER 1 COMPOSITION

from the Calculator part. The OnCalculate method does the calculation using the part (code fi le
CalculatorViewModels/CalculatorViewModel.cs):

public class CalculatorViewModel: Observable
{
 public CalculatorViewModel()
 {
 _calculatorManager = new CalculatorManager();
 _calculatorManager.ImportsSatisfied += (sender, e) =>
 {
 Status += $"{e.StatusMessage}\n";
 };
 CalculateCommand = new RelayCommand(OnCalculate);
 }

 public void Init(params Type[] parts)
 {
 _calculatorManager.InitializeContainer(parts);
 var operators = _calculatorManager.GetOperators();
 CalcAddInOperators.Clear();
 foreach (var op in operators)
 {
 CalcAddInOperators.Add(op);
 }
 }

 private CalculatorManager _calculatorManager;
 public ICommand CalculateCommand { get; set; }

 public void OnCalculate()
 {
 if (_currentOperands.Length == 2)
 {
 string[] input = Input.Split(' ');
 _currentOperands[1] = double.Parse(input[2]);
 Result = _calculatorManager.InvokeCalculator(_currentOperation,
 _currentOperands);
 }
 }

 private string _status;
 public string Status
 {
 get => _status;
 set => SetProperty(ref _status, value);
 }

 private string _input;
 public string Input
 {
 get => _input;
 set => SetProperty(ref _input, value);
 }

 private double _result;
 public double Result
 {
 get => _result;
 set => SetProperty(ref _result, value);
 }

 private IOperation _currentOperation;

Importing Parts ❘ 27

 public IOperation CurrentOperation
 {
 get => _currentOperation;
 set => SetCurrentOperation(value);
 }

 private double[] _currentOperands;
 private void SetCurrentOperation(IOperation op)
 {
 try
 {
 _currentOperands = new double[op.NumberOperands];
 _currentOperands[0] = double.Parse(Input);
 Input += $" {op.Name} ";
 SetProperty(ref _currentOperation, op, nameof(CurrentOperation));
 }
 catch (FormatException ex)
 {
 Status = ex.Message;
 }
 }

 public ObservableCollection<IOperation> CalcAddInOperators { get; } =
 new ObservableCollection<IOperation>();
}

Importing Collections
An import connects to an export. When using exported parts, an import is needed to make the connec-
tion. With the Import attribute, it’s possible to connect to a single export. If more than one part should be
loaded, the ImportMany attribute is required and needs to be defi ned as an array type or IEnumerable<T>.
Because the hosting calculator application allows many calculator extensions that implement the inter-
face ICalculatorExtension to be loaded, the class CalculatorExtensionImport defi nes the property
CalculatorExtensions of type IEnumerable<ICalculatorExtension> to access all the calculator exten-
sion parts (code fi le CalculatorViewModels/CalculatorExtensionsImport.cs):

public class CalculatorExtensionsImport
{
 public event EventHandler<ImportEventArgs> ImportsSatisfied;

 [ImportMany()]
 public IEnumerable<Lazy<ICalculatorExtension,
 CalculatorExtensionMetadataAttribute>>

 CalculatorExtensions { get; set; }

 [OnImportsSatisfied]
 public void OnImportsSatisfied()
 {
 ImportsSatisfied?.Invoke(this, new ImportEventArgs
 {
 StatusMessage = "ICalculatorExtension imports successful"
 });
 }
}

The Import and ImportMany attributes enable the use of ContractName and ContractType to map the
import to an export.

The event ImportsSatisfied of the CalculatorExtensionsImport is connected to an event han-
dler on creation of the CalculatorExtensionsManager to route fi ring the event, and in turn write

28 ❘ BONUS CHAPTER 1 COMPOSITION

a message to a Status property that is bound in the UI for displaying status information (code fi le
CalculatorViewModels/CalculatorExtensionsManager.cs):

public sealed class CalculatorExtensionsManager
{
 private CalculatorExtensionsImport _calcExtensionImport;
 public event EventHandler<ImportEventArgs> ImportsSatisfied;

 public CalculatorExtensionsManager()
 {
 _calcExtensionImport = new CalculatorExtensionsImport();
 _calcExtensionImport.ImportsSatisfied += (sender, e) =>
 {
 ImportsSatisfied?.Invoke(this, e);
 };
 }

 public void InitializeContainer(params Type[] parts)
 {
 var configuration = new ContainerConfiguration().WithParts(parts);
 using (CompositionHost host = configuration.CreateContainer())
 {
 host.SatisfyImports(_calcExtensionImport);
 }
 }

 public IEnumerable<Lazy<ICalculatorExtension,
 CalculatorExtensionMetadataAttribute>> GetExtensionInformation() =>
 _calcExtensionImport.CalculatorExtensions.ToArray();
}

Lazy Loading of Parts
By default, parts are loaded from the container—for example, by calling the extension method
SatisfyImports on the CompositionHost. With the help of the Lazy<T> class, the parts can be loaded
on fi rst access. The type Lazy<T> enables the late instantiation of any type T and defi nes the properties
IsValueCreated and Value. IsValueCreated is a Boolean that returns the information if the contained
type T is already instantiated. Value initializes the contained type T on fi rst access and returns the instance.

The import of an add-in can be declared to be of type Lazy<T>, as shown in the Lazy<ICalculator>
example (code fi le CalculatorViewModels/CalculatorImport.cs):

[Import]
public Lazy<ICalculator> Calculator { get; set; }

Calling the imported property also requires some changes to access the Value property of the
Lazy<T> type. calcImport is a variable of type CalculatorImport. The Calculator property
returns Lazy<ICalculator>. The Value property instantiates the imported type lazily and returns the
ICalculator interface, enabling the GetOperations method to be invoked to get all supported operations
from the calculator add-in (code fi le CalculatorViewModels/CalculatorManager.cs):

public IEnumerable<IOperation> GetOperators() =>
 _calcImport.Calculator.Value.GetOperations();

Reading Metadata
The parts FuelEconomy and TemperatureConversion—all the parts that implement the interface
ICalculatorExtension—are lazy loaded as well. As you’ve seen earlier, a collection can be imported

Importing Parts ❘ 29

with a property of IEnumerable<T>. Instantiating the parts lazily, the property can be of type
IEnumerable<Lazy<T>>. Information about these parts is needed before instantiation to display informa-
tion to the user about what can be expected with these parts. These parts offer additional information using
metadata, as shown earlier. Metadata information can be accessed using a Lazy type with two generic type
parameters. Using Lazy<ICalculatorExtension, CalculatorExtensionMetadataAttribute>, the fi rst
generic parameter, ICalculatorExtension, is used to access the members of the instantiated type; the sec-
ond generic parameter, ICalculatorExtensionMetadataAttribute, is used to access metadata informa-
tion (code fi le CalculatorViewModels/CalculatorExtensionsImport.cs):

[ImportMany()]
public IEnumerable<Lazy<ICalculatorExtension,
 CalculatorExtensionMetadataAttribute>> CalculatorExtensions { get; set; }

The method GetExtensionInformation returns an array of Lazy<ICalculatorExtension,
CalculatorExtensionMetadataAttribute>, which can be used to access metadata infor-
mation about the parts without instantiating the part (code fi le CalculatorViewModels/
CalculatorExtensionsManager.cs):

public IEnumerable<Lazy<ICalculatorExtension,
 CalculatorExtensionMetadataAttribute>> GetExtensionInformation() =>
 _calcExtensionImport.CalculatorExtensions.ToArray();

The GetExtensionInformation method is used in the CalculatorExtensionsViewModel
class on initialization to fi ll the Extensions property (code fi le CalculatorViewModels/
CalculatorExtensionsViewModel.cs):

public class CalculatorExtensionsViewModel: BindableBase
{
 private CalculatorExtensionsManager _calculatorExtensionsManager;

 public CalculatorExtensionsViewModel()
 {
 _calculatorExtensionsManager = new CalculatorExtensionsManager();
 _calculatorExtensionsManager.ImportsSatisfied += (sender, e) =>
 {
 Status += $"{e.StatusMessage}\n";
 };
 }

 public void Init(params Type[] parts)
 {
 _calculatorExtensionsManager.InitializeContainer(parts);
 foreach (var extension in
 _calculatorExtensionsManager.GetExtensionInformation())
 {
 var vm = new ExtensionViewModel(extension);
 vm.ActivatedExtensionChanged += OnActivatedExtensionChanged;
 Extensions.Add(vm);
 }
 }

 public ObservableCollection<ExtensionViewModel> Extensions { get; } =
 new ObservableCollection<ExtensionViewModel>();
 //...

Within the XAML code, metadata information is bound. The Lazy type has a Metadata property that
returns CalculatorExtensionMetadataAttribute. This way, Description, Title, and ImageUri

30 ❘ BONUS CHAPTER 1 COMPOSITION

can be accessed for data binding without instantiating the add-ins (code fi le UWPCalculatorHost/
MainPage.xaml):

<ListView ItemsSource="{x:Bind ViewModel.Extensions}">
 <ListView.ItemsPanel>
 <ItemsPanelTemplate>
 <StackPanel Orientation="Horizontal" />
 </ItemsPanelTemplate>
 </ListView.ItemsPanel>
 <ListView.ItemTemplate>
 <DataTemplate x:DataType="comp:ExtensionViewModel">
 <AppBarButton Label="{x:Bind Extension.Metadata.Title, Mode=OneTime}"
 ToolTipService.ToolTip="{x:Bind Extension.Metadata.Description,
 Mode=OneTime}"
 Width="120"
 Command="{x:Bind ActivateCommand}" IsCompact="False" >
 <AppBarButton.Icon>
 <BitmapIcon UriSource="{x:Bind Extension.Metadata.ImageUri,
 Mode=OneTime}" />
 </AppBarButton.Icon>
 </AppBarButton>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

Figure BC1-6 shows the running application where metadata from the calculator extensions is read—it
includes the image, the title, and the description. With Figure BC1-7 you can see an activated calculator
extension.

FIGURE BC1-6

Summary ❘ 31

FIGURE BC1-7

SUMMARY
In this chapter, you learned about the parts, exports, imports, and containers of Microsoft Composition.
You’ve learned how an application can be built up with complete independency of its parts and dynamically
load parts that can come from different assemblies.

You’ve seen how you can use either attributes or conventions to match exports and imports. Using con-
ventions allows using parts where you can’t change the source code to add attributes, and it also gives the
option to create a framework based on Composition that doesn’t require the user of your framework to add
attributes for importing the parts.

You’ve also learned how parts can be lazy loaded to instantiate them only when they are needed. Parts
can offer metadata that can give enough information for the client to decide whether the part should be
instantiated.

