
WHAT’S IN THIS CHAPTER?

➤ XML standards
➤ XmlReader and XmlWriter
➤ XmlDocument
➤ XPathNavigator
➤ LINQ to XML
➤ The System.Xml.Linq namespace
➤ Queries in XML documents using LINQ
➤ JSON
➤ Object conversion with JSON

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The Wrox.com code downloads for this chapter are found at www.wrox.com on the Download
Code tab. The source code is also available at https://github.com/ProfessionalCSharp/
ProfessionalCSharp7 in the directory XMLandJSON.

The code for this chapter is divided into the following major examples:

➤ XmlReaderAndWriter
➤ XmlDocument
➤ XPathNavigator
➤ ObjectToXmlSerialization
➤ ObjectToXmlSerializationWOAttributes
➤ LinqToXmlSample
➤ JsonSample

34 ❘ BONUS CHAPTER 2 XML AND JSON

DATA FORMATS
The Extensible Markup Language (XML) has been playing an important part in information technol-
ogy since 1996. The language is used to describe data, and it’s used with confi guration fi les, source code
documentation, web services that make use of SOAP, and more. In recent years, it has been replaced in
some ways (for example, confi guration fi les and data transfer from REST-based web services) by JavaScript
Object Notation (JSON) because this technology has less overhead and can be used easily from JavaScript.
However, JSON cannot replace XML in all the scenarios where XML is used today. Both data formats can
be used with .NET applications, as covered in this chapter.

For processing XML, different options are available. You can either read the complete document and navi-
gate within the Document Object Model (DOM) hierarchy using the XmlDocument class, or you can use
XmlReader and XmlWriter. Using XmlReader is more complex to do, but you can read larger documents.
With XmlDocument, the complete document is loaded in the memory. With the XmlReader it is possible to
read node by node.

Another way to work with XML is to serialize .NET object trees to XML and deserialize XML data back
into .NET objects using the System.Xml.Serialization namespace.

When querying and fi ltering XML content, you can either use an XML standard XPath or use LINQ to
XML. Both technologies are covered in this chapter. LINQ to XML also offers an easy way to create XML
documents and fragments.

NOTE If you want to learn more about XML, Wrox’s Beginning XML, 5th Edition
(Wiley, 2012) is a great place to start.

The discussion begins with a brief overview of the status of XML standards.

XML
The fi rst XML examples use the fi le books.xml as the source of data. You can download this fi le and the
other code samples for this chapter from the Wrox website (www.wrox.com). The books.xml fi le is a book
catalog for an imaginary bookstore. It includes book information such as genre, author name, price, and
International Standard Book Number (ISBN).

This is what the books.xml fi le looks like:

<?xml version='1.0'?>
<!-– This file represents a fragment of a book store inventory database -–>
<bookstore>
 <book genre="autobiography" publicationdate="1991" ISBN="1-861003-11-0">
 <title>The Autobiography of Benjamin Franklin</title>
 <author>
 <first-name>Benjamin</first-name>
 <last-name>Franklin</last-name>
 </author>
 <price>8.99</price>
 </book>
 <book genre="novel" publicationdate="1967" ISBN="0-201-63361-2">
 <title>The Confidence Man</title>
 <author>
 <first-name>Herman</first-name>
 <last-name>Melville</last-name>
 </author>
 <price>11.99</price>
 </book>
 <book genre="philosophy" publicationdate="1991" ISBN="1-861001-57-6">

Data Formats ❘ 35

 <title>The Gorgias</title>
 <author>
 <name>Plato</name>
 </author>
 <price>9.99</price>
 </book>
</bookstore>

Let’s have a look at the parts of this XML content. An XML document should start with an XML declara-
tion that specifi es the XML version number:

<?xml version='1.0'?>

You can put comments anywhere in an XML document outside of markup. They start with <!-- and end
with -->:

<!-– This file represents a fragment of a book store inventory database -–>

A full document can contain only a single root element (whereas an XML fragment can contain multiple
elements). With the books.xml fi le, the root element is bookstore:

<bookstore>
 <!-- child elements here -->
</bookstore>

An XML element can contain child elements. The author element contains the child elements first-name
and last-name. The first-name element itself contains inner text Benjamin. first-name is a child ele-d
ment of author, which also means author is a parent element of t first-name. first-name and last-name
are sibling elements:g

<author>
 <first-name>Benjamin</first-name>
 <last-name>Franklin</last-name>
</author>

An XML element can also contain attributes. The book element contains the attributes genre, publica-
tiondate, and ISBN. Values for attributes need to be surrounded by quotes.

<book genre="novel" publicationdate="1967" ISBN="0-201-63361-2">
</book>

NOTE The HTML5 specifi cation doesn’t require quotes with attributes. HTML is not
XML; HTML has a more relaxed syntax, whereas XML is strict. HTML documents
can also be written using XHTML, which uses XML syntax.

XML Standards Support in .NET
The World Wide Web Consortium (W3C) has developed a set of standards that give XML its power and
potential. Without these standards, XML would not have the impact on the development world that it does.
The W3C website (www.w3.org) is a valuable source for all things XML.

The .NET Framework supports the following W3C standards:

➤ XML 1.0 (www.w3.org/TR/REC-xml), including DTD support
➤ XML namespaces (www.w3.org/TR/REC-xml-names), both stream level and DOM
➤ XML schemas (www.w3.org/XML/Schema)
➤ XPath expressions (www.w3.org/TR/xpath)
➤ XSLT transformations (www.w3.org/TR/xslt)

36 ❘ BONUS CHAPTER 2 XML AND JSON

➤ DOM Level 1 Core (www.w3.org/TR/REC-DOM-Level-1)
➤ DOM Level 2 Core (www.w3.org/TR/DOM-Level-2-Core)
➤ SOAP 1.2 (www.w3.org/TR/SOAP)

The level of standards support changes as the W3C updates the recommended standards and as Microsoft
and the community update .NET Core. Therefore, you need to make sure that you stay up to date with the
standards and the level of support provided.

Working with XML in the Framework
The .NET Framework gives you many different options for reading and writing XML. You can directly use
the DOM tree to work with XmlDocument and classes from the System.Xml namespace and the System
.Xml.XmlDocument NuGet package. This works well and is easy to do with fi les that fi t into the memory.

For fast reading and writing XML, you can use the XmlReader and XmlWriter classes. These classes
allow streaming and make it possible to work with large XML fi les. These classes are in the System.Xml
namespace as well, but they’re in a different NuGet package: System.Xml.ReaderWriter.

For using the XPath standard to navigate and query XML, you can use the XPathNavigator class. This is
defi ned in the System.Xml.XPath namespace in the NuGet package System.Xml.XmlDocument.

.NET also offers another syntax to query XML: LINQ. Although LINQ to XML doesn’t support the W3C
DOM standard, it provides an easier option to navigate within the XML tree and allows easier creating of
XML documents or fragments. The namespace needed here is System.Xml.Linq, and the NuGet package
System.Xml.XDocument.

NOTE LINQ is covered in Chapter 13, “Language Integrated Query.” The specifi c
implementation of LINQ, LINQ to XML, is covered in this chapter.

To serialize and deserialize .NET objects to XML, you can use the XmlSerializer. With .NET Core, the
NuGet package needed here is System.Xml.XmlSerializer with the namespace System.Xml
.Serialization.

WCF uses another method for XML serialization: data contract serialization. Although the XmlSerializer
does allow you to differ serialization between attributes and elements, this is not possible with the
DataContractSerializer serializing XML.

JSON
JavaScript Object Notation (JSON) came up in recent years because it can be directly used from JavaScript,
and it has less overhead compared to XML. JSON is defi ned by IETF RFC 7159 (https://tools.ietf
.org/html/rfc7159), and the ECMA standard 404 (http://www.ecma-international.org/
publications/files/ECMA-ST/ECMA-404.pdf).

For sending JSON documents, there’s an offi cial MIME type "application/json". Some frameworks still
use older, unoffi cial MIME types "text/json" or "text/javascript".

The same content as the earlier XML fi le is described here using JSON. Arrays of elements are contained
within brackets. In the example, the JSON fi le contains multiple book objects. Curly brackets defi ne objects
or dictionaries. The key and value are separated by a colon. The key needs to be quoted; the value is a string:

[
 "book": {
 "genre": "autobiography",
 "publicationdate": 1991,
 "ISBN": "1-861003-11-0",

Data Formats ❘ 37

 "title": "The Autobiography of Benjamin Franklin"
 "author": {
 "first-name": "Benjamin",
 "last-name": "Franklin"
 },
 "price": 8.99
 },
 "book": {
 "genre": "novel",
 "publicationdate": 1967,
 "ISBN": "1-861001-57-6",
 "title": "The Confidence Man"
 "author": {
 "first-name": "Herman",
 "last-name": "Melville"
 },
 "price": 11.99
 },
 "book": {
 "genre": "philosophy",
 "publicationdate": 1991,
 "ISBN": "1-861001-57-6",
 "title": "The Georgias"
 "author": {
 "name": "Plato",
 },
 "price": 9.99
 }
]

With .NET, JSON is used in many different places. When you’re creating new DNX projects, you can see
JSON used as the project confi guration fi le. It’s used with web projects to serialize data from and to the
client using the Web API (see Chapter 32, “ASP.NET Core Web API.”) and used in data stores such as the
NoSQL database Azure Cosmos DB.

Different options are available to you when you’re using JSON with .NET. One of the JSON serializers is
the DataContractJsonSerializer. This type derives from the base class XmlObjectSerializer, although
it doesn’t really have a relation to XML. At the time when the data contract serialization technology was
invented (which happened with .NET 3.0), the idea was that from now on every serialization is XML (XML
in binary format is available as well). As time moved on, this assumption was not true anymore. JSON was
widely used. As a matter of fact, JSON was added to the hierarchy to be supported with the data contract
serialization. However, a faster, more fl exible implementation won the market and is now supported by
Microsoft and used with many .NET applications: Json.NET. Because this library is the one most used with
.NET applications, it is covered in this chapter.

Beside the core JSON standard, JSON grows as well. Features known from XML are added to JSON.
Let’s get into examples of the JSON improvements and compare them to XML features. The XML Schema
Defi nition (XSD) describes XML vocabularies; at the time of this writing, the JSON Schema with similar
features is a work in progress. With WCF, XML can be compacted with a custom binary format. You can
also serialize JSON in a binary form that is more compact than the text format. A binary version of JSON
is described by BSON (Binary JSON): http://bsonspec.org. Sending SOAP (an XML format) across the
network makes use of the Web Service Description Language (WSDL) to describe the service. With REST
services that are offering JSON data, a description is available as well: Swagger (http://swagger.io).

NOTE ASP.NET Web API and Swagger are covered in Chapter 32.

Now it’s time to get into concrete uses of the .NET classes.

38 ❘ BONUS CHAPTER 2 XML AND JSON

READING AND WRITING STREAMED XML
The XmlReader and XmlWriter classes provide a fast way to read and write large XML documents.
XmlReader-based classes provide a very fast, forward-only, read-only cursor that streams the XML data for
processing. Because it is a streaming model, the memory requirements are not very demanding. However,
you don’t have the navigation fl exibility and the read or write capabilities that would be available from
a DOM-based model. XmlWriter-based classes produce an XML document that conforms to the W3C’s
XML 1.0 (4th edition).

The sample code using XmlReader and XmlWriter makes use of the following namespaces:

System

System.IO

System.Text

System.Xml

The application enables you to specify several command-line arguments for all the different sam-
ple cases that are defi ned as const value and specifi es the fi lenames to read and write to (code fi le
XmlReaderAndWriterSample/Program.cs):

class Program
{
 private const string BooksFileName = "books.xml";
 private const string NewBooksFileName = "newbooks.xml";
 private const string ReadTextOption = "-r";
 private const string ReadElementContentOption = "-c";
 private const string ReadElementContentOption2 = "-c2";
 private const string ReadDecimalOption = "-d";
 private const string ReadAttributesOption = "-a";
 private const string WriteOption = "-w";
 //...
}

The Main method invokes the specifi c sample method based on the command line that is passed:

static void Main(string[] args)
{
 if (args.Length != 1)
 {
 ShowUsage();
 return;
 }

 switch (args[0])
 {
 case ReadTextOption:
 ReadTextNodes();
 break;
 case ReadElementContentOption:
 ReadElementContent();
 break;
 case ReadElementContentOption2:
 ReadElementContent2();
 break;
 case ReadDecimalOption:
 ReadDecimal();
 break;
 case ReadAttributesOption:
 ReadAttributes();
 break;

Reading and Writing Streamed XML ❘ 39

 default:
 ShowUsage();
 break;
 }
}

Reading XML with XmlReader
The XmlReader enables you to read large XML streams. It is implemented as a pull model parser to pull
data into the application that’s requesting it.

The following is a very simple example of reading XML data; later you take a closer look at the
XmlReader class. Because the XmlReader is an abstract class, it cannot be directly instantiated. Instead,
the factory method Create is invoked to return an instance that derives from the base class XmlReader.
The Create method offers several overloads where either a fi lename, a TextReader, or a Stream can be
supplied with the fi rst argument. The sample code directly passes the fi lename to the Books.xml fi le. After
the reader is created, nodes can be read using the Read method. As soon as no node is available, the Read
method returns false. You can debug through the while loop to see all the node types returned from the
books.xml fi le. Only with the nodes of type XmlNodeType.Text is the value written to the console (code
fi le XMLReaderAndWriterSample/Program.cs):

public static void ReadTextNodes()
{
 using (XmlReader reader = XmlReader.Create(BooksFileName))
 {
 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Text)
 {
 Console.WriteLine(reader.Value);
 }
 }
 }
}

Running the application with the -r option shows the value of all text nodes:

The Autobiography of Benjamin Franklin
Benjamin
Franklin
8.99
The Confidence Man
Herman
Melville
11.99
The Gorgias
Plato
9.99

Using Read Methods
Several ways exist to move through the document. As shown in the previous example, Read takes you to the
next node. You can then verify whether the node has a value (HasValue) or, as you see later, whether the
node has any attributes (HasAttributes). You can also use the ReadStartElement method, which verifi es
whether the current node is the start element and then positions you on the next node. If you are not on the
start element, an XmlException is raised. Calling this method is the same as calling the IsStartElement
method followed by a Read method.

ReadElementString is like ReadString except that you can optionally pass in the name of an element. If
the next content node is not a start tag, or if the Name parameter does not match the current node Name, an
exception is raised.

40 ❘ BONUS CHAPTER 2 XML AND JSON

Here is an example showing how you can use ReadElementString. Notice that it uses FileStreams, so
you need to ensure that you import the System.IO namespace (code fi le XMLReaderAndWriterSample/
Program.cs):

public static void ReadElementContent()
{
 using (XmlReader reader = XmlReader.Create(BooksFileName))
 {
 while (!reader.EOF)
 {
 if (reader.MoveToContent() == XmlNodeType.Element &&
 reader.Name == "title")
 {
 Console.WriteLine(reader.ReadElementContentAsString());
 }
 else
 {
 // move on
 reader.Read();
 }
 }
 }
}

In the while loop, the MoveToContent method is used to fi nd each node of type XmlNodeType.Element
with the name title. The EOF property of the XmlTextReader checks the end of the loop condition. If the
node is not of type Element or not named title, the else clause issues a Read method to move to the next
node. When a node is found that matches the criteria, the result is written to the console. This should leave
just the book titles written to the console. Note that you don’t have to issue a Read call after a successful
ReadElementString because ReadElementString consumes the entire Element and positions you on the
next node.

If you remove && rdr.Name=="title" from the if clause, you have to catch the XmlException when
it is thrown. Looking at the XML data fi le, the fi rst element that MoveToContent fi nds is the <book-
store> element. Because it is an element, it passes the check in the if statement. However, because it
does not contain a simple text type, it causes ReadElementString to raise an XmlException. One way to
work around this is to catch the exception and invoke the Read method in the exception handler (code fi le
XmlReaderAndWriterSample/Program.cs):

public static void ReadElementContent2()
{
 using (XmlReader reader = XmlReader.Create(BooksFileName))
 {
 while (!reader.EOF)
 {
 if (reader.MoveToContent() == XmlNodeType.Element)
 {
 try
 {
 Console.WriteLine(reader.ReadElementContentAsString());
 }
 catch (XmlException ex)
 {
 reader.Read();
 }
 }
 else
 {
 // move on
 reader.Read();
 }
 }
 }
}

Reading and Writing Streamed XML ❘ 41

After running this example, the results should be the same as before. The XmlReader can also read strongly
typed data. There are several ReadElementContentAs methods, such as ReadElementContentAsDouble,
ReadElementContentAsBoolean, and so on. The following example shows how to read in the values as a
decimal and do some math on the value. In this case, the value from the price element is increased by 25 per-
cent (code fi le XmlReaderAndWriterSample/Program.cs):

public static void ReadDecimal()
{
 using (XmlReader reader = XmlReader.Create(BooksFileName))
 {
 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Element)
 {
 if (reader.Name == "price")
 {
 decimal price = reader.ReadElementContentAsDecimal();
 Console.WriteLine($"Current Price = {price}");
 price += price * .25m;
 Console.WriteLine($"New price {price}");
 }
 else if (reader.Name == "title")
 {
 Console.WriteLine(reader.ReadElementContentAsString());
 }
 }
 }
 }
}

Retrieving Attribute Data
As you play with the sample code, you might notice that when the nodes are read in, you don’t see any attri-
butes. This is because attributes are not considered part of a document’s structure. When you are on an ele-
ment node, you can check for the existence of attributes and optionally retrieve the attribute values.

For example, the HasAttributes property returns true if there are any attributes; otherwise, it returns
false. The AttributeCount property tells you how many attributes there are, and the GetAttribute
method gets an attribute by name or by index. If you want to iterate through the attributes one at a time,
you can use the MoveToFirstAttribute and MoveToNextAttribute methods.

The following example iterates through the attributes of the books.xml document (code fi le
XmlReaderAndWriterSample/Program.cs):

public static void ReadAttributes()
{
 using (XmlReader reader = XmlReader.Create(BooksFileName))
 {
 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Element)
 {
 for (int i = 0; i < reader.AttributeCount; i++)
 {
 Console.WriteLine(reader.GetAttribute(i));
 }
 }
 }
 }
}

42 ❘ BONUS CHAPTER 2 XML AND JSON

This time you are looking for element nodes. When you fi nd one, you loop through all the attributes and,
using the GetAttribute method, load the value of the attribute into the list box. In the preceding example,
those attributes would be genre, publicationdate, and ISBN.

Using the XmlWriter Class
The XmlWriter class enables you to write XML to a stream, a fi le, a StringBuilder, a TextWriter,
or another XmlWriter object. Like XmlTextReader, it does so in a forward-only, noncached manner.
XmlWriter is confi gurable, enabling you to specify such things as whether to indent content, the amount to
indent, what quote character to use in attribute values, and whether namespaces are supported. This con-
fi guration is done using an XmlWriterSettings object.

Here’s a simple example that shows how you can use the XmlTextWriter class (code fi le
XmlReaderAndWriterSample/Program.cs):

public static void WriterSample()
{
 var settings = new XmlWriterSettings
 {
 Indent = true,
 NewLineOnAttributes = true,
 Encoding = Encoding.UTF8,
 WriteEndDocumentOnClose = true
 }

 StreamWriter stream = File.CreateText(NewBooksFileName);
 using (XmlWriter writer = XmlWriter.Create(stream, settings))
 {
 writer.WriteStartDocument();
 //Start creating elements and attributes
 writer.WriteStartElement("book");
 writer.WriteAttributeString("genre", "Mystery");
 writer.WriteAttributeString("publicationdate", "2001");
 writer.WriteAttributeString("ISBN", "123456789");
 writer.WriteElementString("title", "Case of the Missing Cookie");
 writer.WriteStartElement("author");
 writer.WriteElementString("name", "Cookie Monster");
 writer.WriteEndElement();
 writer.WriteElementString("price", "9.99");
 writer.WriteEndElement();
 writer.WriteEndDocument();
 }
}

Here, you are writing to a new XML fi le called newbook.xml, adding the data for a new book. Note that
XmlWriter overwrites an existing fi le with a new one. (Later in this chapter you read about inserting a
new element or node into an existing document.) You are instantiating the XmlWriter object by using the
Create static method. In this example, a string representing a fi lename is passed as a parameter, along with
an instance of an XmlWriterSettings class.

The XmlWriterSettings class has properties that control how the XML is generated. The
CheckedCharacters property is a Boolean that raises an exception if a character in the XML does not con-
form to the W3C XML 1.0 recommendation. The Encoding class sets the encoding used for the XML being
generated; the default is Encoding.UTF8. The Indent property is a Boolean value that determines whether
elements should be indented. The IndentChars property is set to the character string that it is used to
indent. The default is two spaces. The NewLine property is used to determine the characters for line breaks.
In the preceding example, the NewLineOnAttribute is set to true. This puts each attribute in a separate
line, which can make the generated XML a little easier to read.

Using the DOM in .NET ❘ 43

WriteStartDocument adds the document declaration. Now you start writing data. First is the book ele-
ment; next, you add the genre, publicationdate, and ISBN attributes. Then you write the title, author,
and price elements. Note that the author element has a child element name.

When you click the button, you produce the booknew.xml fi le, which looks like this:

<?xml version="1.0" encoding="utf-8"?>
<book
 genre="Mystery"
 publicationdate="2001"
 ISBN="123456789">
 <title>Case of the Missing Cookie</title>
 <author>
 <name>Cookie Monster</name>
 </author>
 <price>9.99</price>
</book>

The nesting of elements is controlled by paying attention to when you start and fi nish writing elements and
attributes. You can see this when you add the name child element to the authors element. Note how the
WriteStartElement and WriteEndElement method calls are arranged and how that arrangement produces
the nested elements in the output fi le.

Along with the WriteElementString and WriteAttributeString methods, there are several other spe-
cialized write methods. WriteComment writes out a comment in proper XML format. WriteChars writes
out the contents of a char buffer. WriteChars needs a buffer (an array of characters), the starting position
for writing (an integer), and the number of characters to write (an integer).

Reading and writing XML using the XmlReader- and XmlWriter-based classes are fl exible and simple to do.
Next, you fi nd out how the DOM is implemented in the System.Xml namespace through the XmlDocument
and XmlNode classes.

USING THE DOM IN .NET
The DOM implementation in .NET supports the W3C DOM specifi cations. The DOM is implemented
through the XmlNode class, which is an abstract class that represents a node of an XML document. Concrete
classes are XmlDocument, XmlDocumentFragment, XmlAttribute, and XmlNotation. XmlLinkedNode
is an abstract class that derives from XmlNode. Concrete classes that derive from XmlLinkedNode are
XmlDeclaration, XmlDocumentType, XmlElement, and XmlProcessingInstruction.

An XmlNodeList class is an ordered list of nodes. This is a live list of nodes, and any changes to any node
are immediately refl ected in the list. XmlNodeList supports indexed access or iterative access.

The XmlNode and XmlNodeList classes make up the core of the DOM implementation with .NET.

The sample code using XmlDocument makes use of the following namespaces:

System

System.IO

System.Xml

Reading with the XmlDocument Class
XmlDocument is a class that represents the XML DOM in .NET. Unlike XmlReader and XmlWriter,
XmlDocument provides read and write capabilities as well as random access to the DOM tree.

The example introduced in this section creates an XmlDocument object, loads a document from disk, and
loads a text box with data from the title elements. This is like one of the examples that you constructed in

44 ❘ BONUS CHAPTER 2 XML AND JSON

the section “Reading XML with XmlReader.” The difference is that here you select the nodes you want to
work with instead of going through the entire document as in the XmlReader-based example.

Here is the code to create an XmlDocument object. Note how simple it looks in comparison to the
XmlReader example (code fi le XmlDocumentSample/Program.cs):

public static void ReadXml()
{
 using (FileStream stream = File.OpenRead(BooksFileName))
 {
 var doc = new XmlDocument();
 doc.Load(stream);
 XmlNodeList titleNodes = doc.GetElementsByTagName("title");
 foreach (XmlNode node in titleNodes)
 {
 Console.WriteLine(node.OuterXml);
 }
 }
}

If this is all that you wanted to do, using the XmlReader would have been a much more effi cient way to read
the fi le, because you just go through the document once and then you are fi nished with it. This is exactly the
type of work that XmlReader was designed for. However, if you want to revisit a node, using XmlDocument
is a better way.

Navigating Through the Hierarchy
A big advantage of the XmlDocument class is that you can navigate the DOM tree. The following example
accesses all author elements and writes the outer XML to the console (this is the XML including the
author element), the inner XML (without the author element), the next sibling, the previous sibling, the
fi rst child, and the parent (code fi le XmlDocumentSample/Program.cs):

public static void NavigateXml()
{
 using (FileStream stream = File.OpenRead(BooksFileName))
 {
 var doc = new XmlDocument();
 doc.Load(stream);
 XmlNodeList authorNodes = doc.GetElementsByTagName("author");
 foreach (XmlNode node in authorNodes)
 {
 Console.WriteLine($"Outer XML: {node.OuterXml}");
 Console.WriteLine($"Inner XML: {node.InnerXml}");
 Console.WriteLine($"Next sibling outer XML: " +
 $"{node.NextSibling.OuterXml}");
 Console.WriteLine($"Previous sibling outer XML: " +
 $"{node.PreviousSibling.OuterXml}");
 Console.WriteLine($"First child outer Xml: {node.FirstChild.OuterXml}");
 Console.WriteLine($"Parent name: {node.ParentNode.Name}");
 Console.WriteLine();
 }
 }
}

When you run the application, you can see these values for the fi rst element found:

Outer XML: <author><first-name>Benjamin</first-name>
 <last-name>Franklin</last-name></author>
Inner XML: <first-name>Benjamin</first-name><last-name>Franklin</last-name>
Next sibling outer XML: <price>8.99</price>
Previous sibling outer XML:

Using the DOM in .NET ❘ 45

 <title>The Autobiography of Benjamin Franklin</title>
First child outer Xml: <first-name>Benjamin</first-name>
Parent name: book

Inserting Nodes with XmlDocument
Earlier, you looked at an example that used the XmlWriter class that created a new document. The limita-
tion was that it would not insert a node into a current document. With the XmlDocument class, you can do
just that.

The following code sample creates the element book using CreateElement, adds some attributes, adds some
child elements, and after creating the complete book element adds it to the root element of the XML docu-
ment (code fi le XmlDocumentSample/Program.cs):

public static void CreateXml()
{
 var doc = new XmlDocument();
 using (FileStream stream = File.OpenRead("books.xml"))
 {
 doc.Load(stream);
 }

 //create a new 'book' element
 XmlElement newBook = doc.CreateElement("book");

 //set some attributes
 newBook.SetAttribute("genre", "Mystery");
 newBook.SetAttribute("publicationdate", "2001");
 newBook.SetAttribute("ISBN", "123456789");

 //create a new 'title' element
 XmlElement newTitle = doc.CreateElement("title");
 newTitle.InnerText = "Case of the Missing Cookie";
 newBook.AppendChild(newTitle);

 //create new author element
 XmlElement newAuthor = doc.CreateElement("author");
 newBook.AppendChild(newAuthor);

 //create new name element
 XmlElement newName = doc.CreateElement("name");
 newName.InnerText = "Cookie Monster";
 newAuthor.AppendChild(newName);

 //create new price element
 XmlElement newPrice = doc.CreateElement("price");
 newPrice.InnerText = "9.95";
 newBook.AppendChild(newPrice);

 //add to the current document
 doc.DocumentElement.AppendChild(newBook);
 var settings = new XmlWriterSettings
 {
 Indent = true,
 IndentChars = "\t",
 NewLineChars = Environment.NewLine
 };

 //write out the doc to disk
 using (StreamWriter streamWriter = File.CreateText(NewBooksFileName))
 using (XmlWriter writer = XmlWriter.Create(streamWriter, settings))

46 ❘ BONUS CHAPTER 2 XML AND JSON

 {
 doc.WriteContentTo(writer);
 }

 XmlNodeList nodeLst = doc.GetElementsByTagName("title");
 foreach (XmlNode node in nodeLst)
 {
 Console.WriteLine(node.OuterXml);
 }
}

When you run the application, the following book element is added to the bookstore and written to the fi le
newbooks.xml:

<book genre="Mystery" publicationdate="2001" ISBN="123456789">
 <title>Case of the Missing Cookie</title>
 <author>
 <name>Cookie Monster</name>
 </author>
 <price>9.95</price>
</book>

After creating the fi le, the application writes all title nodes to the console. You can see that the added ele-
ment is now included:

<title>The Autobiography of Benjamin Franklin</title>
<title>The Confidence Man</title>
<title>The Gorgias</title>
<title>Case of the Missing Cookie</title>

You should use the XmlDocument class when you want to have random access to the document. Use the
XmlReader-based classes when you want a streaming-type model instead. Remember that there is a cost for
the fl exibility of the XmlNode-based XmlDocument class: Memory requirements are higher and the perfor-
mance of reading the document is not as good as when using XmlReader. There is another way to traverse
an XML document: the XPathNavigator.

USING XPATHNAVIGATOR
An XPathNavigator can be used to select, iterate, and fi nd data from an XML document using the XPath
syntax. An XPathNavigator can be created from an XPathDocument. The XPathDocument cannot be
changed; it is designed for performance and read-only use. Unlike the XmlReader, the XPathNavigator is
not a streaming model, so the document is read and parsed only once. Like XmlDocument, it requires the
complete document loaded in memory.

The System.Xml.XPath namespace defi ned in the NuGet package System.Xml.XPath is built for speed.
It provides a read-only view of your XML documents, so there are no editing capabilities. Classes in this
namespace are built for fast iteration and selections on the XML document in a cursory fashion.

The following table lists the key classes in System.Xml.XPath and gives a short description of the purpose
of each class.

 CLASS NAME DESCRIPTION

XPathDocument Provides a view of the entire XML document. Read-only.

XPathNavigator Provides the navigational capabilities to an XPathDocument.

XPathNodeIterator Provides iteration capabilities to a node set.

XPathExpression Represents a compiled XPath expression. Used by SelectNodes,
SelectSingleNodes, Evaluate, and Matches.

Using XPathNavigator ❘ 47

The sample code makes use of the following namespaces:

System

System.IO

System.Xml

System.Xml.XPath

XPathDocument
XPathDocument does not offer any of the functionality of the XmlDocument class. Its sole purpose is to cre-
ate XPathNavigators. In fact, that is the only method available on the XPathDocument class (other than
those provided by Object).

You can create an XPathDocument in several different ways. You can pass in an XmlReader, or a Stream-
based object to the constructor. This provides a great deal of fl exibility.

XPathNavigator
XPathNavigator contains methods for moving and selecting elements. Move methods set the current posi-
tion of the iterator to the element that should be moved to. You can move to specifi c attributes of an element:
the MoveToFirstAttribute method moves to the fi rst attribute, the MoveToNextAttribute method to the
next one. MoveToAttribute allows specifying a specifi c attribute name. You can move to sibling nodes with
MoveToFirst, MoveToNext, MoveToPrevious, and MoveToLast. It’s also possible to move to child elements
(MoveToChild, MoveToFirstChild), to parent elements (MoveToParent), and directly to the root element
(MoveToRoot).

You can select methods using XPath expressions using the Select method. To fi lter the selection based
on specifi c nodes in the tree and the current position, other methods exist. SelectAncestor only fi lters
ancestor nodes, and SelectDescendants fi lters all descendants. Only the direct children are fi ltered with
SelectChildren. SelectSingleNode accepts an XPath expression and returns a single matching node.

The XPathNavigator also allows changing the XML tree using one of the Insert methods if the
CanEdit property returns true. When you use the XmlDocument class to create an XPathNavigator,
the CanEdit property of the navigator returns true and thus allows changes using the Insert methods.

XPathNodeIterator
The XPathDocument represents the complete XML document, the XPathNavigator enables you to select
nodes and move the cursor within the document to specifi c nodes, and the XPathNodeIterator enables you
to iterate over a set of nodes.

The XPathNodeIterator is returned by the XPathNavigator Select methods. You use it to iterate over
the set of nodes returned by a Select method of the XPathNavigator. Using the MoveNext method of the
XPathNodeIterator does not change the location of the XPathNavigator that created it. However, you
can get a new XPathNavigator using the Current property of an XPathNodeIterator. The Current prop-
erty returns an XPathNavigator that is set to the current position.

Navigating Through XML Using XPath
The best way to see how these classes are used is to look at some code that iterates through the books.xml
document. This enables you to see how the navigation works.

The fi rst example iterates all books that defi ne the genre novel. First, an XPathDocument object is cre-
ated that receives the XML fi lename in the constructor. This object, which holds read-only content of
the XML fi le, offers the CreateNavigator method to create an XPathNavigator. When you use this

48 ❘ BONUS CHAPTER 2 XML AND JSON

navigator, an XPath expression can be passed to the Select method. When you use XPath, you can access
element trees using / between hierarchies. /bookstore/book retrieves all book nodes within the book-
store element. @genre is a shorthand notation to access the attribute genre. The Select method returns
an XPathNodeIterator that enables you to iterate all nodes that match the expression. The fi rst while
loop iterates all book elements that match calling the MoveNext method. With each iteration, another select
method is invoked on the current XPathNavigator—SelectDescendants. SelectDescendants returns
all descendants, which means the child nodes, and the children of the child nodes, and the children of those
children through the complete hierarchy. With the SelectDescendants method, the overload is taken to
match only element nodes and to exclude the book element itself. The second while loop iterates this collec-
tion and writes the name and value to the console (code fi le XPathNavigatorSample/Program.cs):

public static void SimpleNavigate()
{
 //modify to match your path structure
 var doc = new XPathDocument(BooksFileName);

 //create the XPath navigator
 XPathNavigator nav = doc.CreateNavigator();

 //create the XPathNodeIterator of book nodes
 // that have genre attribute value of novel
 XPathNodeIterator iterator = nav.Select("/bookstore/book[@genre='novel']");
 while (iterator.MoveNext())
 {
 XPathNodeIterator newIterator = iterator.Current.SelectDescendants(
 XPathNodeType.Element, matchSelf: false);
 while (newIterator.MoveNext())
 {
 Console.WriteLine($"{newIterator.Current.Name}: " +
 $"{newIterator.Current.Value}");
 }
 }
}

When you run the application, you can see the content of the only book that matches the novel genre with
all its children as you can see with the first-name and last-name elements that are contained within
author:

title: The Confidence Man
author: HermanMelville
 first-name: Herman
 last-name: Melville
price: 11.99

Using XPath Evaluations
XPath not only allows fast access to XML nodes within a tree, it also defi nes some functions—for example,
ceiling, floor, number, round, and sum—for numbers. The following sample is somewhat like the previ-
ous one; it accesses all book elements instead of only the one matching the novel genre. Iterating the book
elements, just the title child element is accessed by moving the current position to the fi rst child title node.
From the title node, the name and value are written to the console. The very special piece of code is defi ned
with the last statement. The XPath sum function is invoked on the value of /bookstore/book/price ele-
ments. Such functions can be evaluated by calling the Evaluate method on the XPathNavigator (code fi le
XPathNavigatorSample/Program.cs):

public static void UseEvaluate()
{
 //modify to match your path structure
 var doc = new XPathDocument(BooksFileName);

Using XPathNavigator ❘ 49

 //create the XPath navigator
 XPathNavigator nav = doc.CreateNavigator();

 //create the XPathNodeIterator of book nodes
 XPathNodeIterator iterator = nav.Select("/bookstore/book");
 while (iterator.MoveNext())
 {
 if (iterator.Current.MoveToChild("title", string.Empty))
 {
 Console.WriteLine($"{iterator.Current.Name}: {iterator.Current.Value}");
 }
 }
 Console.WriteLine("=========================");
 Console.WriteLine($"Total Cost = " +
 $"{nav.Evaluate("sum(/bookstore/book/price)")}");

When you run the application, you can see all book titles and the summary price:

title: The Autobiography of Benjamin Franklin
title: The Confidence Man
title: The Gorgias
=========================
Total Cost = 30.97

Changing XML Using XPath
Next, make some changes using XPath. To create a changeable XPathNavigator, the XmlDocument class is
used. The CanEdit property of the XPathNavigator returns true when you create it via XmlDocument, and
thus the InsertAfter method can be invoked. Using InsertAfter, a discount is added as sibling after the
price element. The newly created XML document is accessed using the OuterXml property of the navigator,
and a new XML fi le is saved (code fi le XPathNavigatorSample/Program.cs):

public static void Insert()
{
 var doc = new XmlDocument();
 doc.Load(BooksFileName);

 XPathNavigator navigator = doc.CreateNavigator();
 if (navigator.CanEdit)
 {
 XPathNodeIterator iter = navigator.Select("/bookstore/book/price");
 while (iter.MoveNext())
 {
 iter.Current.InsertAfter("<disc>5</disc>");
 }
 }

 using (var stream = File.CreateText(NewBooksFileName))
 {
 var outDoc = new XmlDocument();
 outDoc.LoadXml(navigator.OuterXml);
 outDoc.Save(stream);
 }
}

The newly generated XML contains the disc elements:

<?xml version="1.0" encoding="utf-8"?>
<!-- This file represents a fragment of a book store inventory database -->
<bookstore>
 <book genre="autobiography" publicationdate="1991" ISBN="1-861003-11-0">
 <title>The Autobiography of Benjamin Franklin</title>

50 ❘ BONUS CHAPTER 2 XML AND JSON

 <author>
 <first-name>Benjamin</first-name>
 <last-name>Franklin</last-name>
 </author>
 <price>8.99</price>
 <disc>5</disc>
 </book>
 <book genre="novel" publicationdate="1967" ISBN="0-201-63361-2">
 <title>The Confidence Man</title>
 <author>
 <first-name>Herman</first-name>
 <last-name>Melville</last-name>
 </author>
 <price>11.99</price>
 <disc>5</disc>
 </book>
 <book genre="philosophy" publicationdate="1991" ISBN="1-861001-57-6">
 <title>The Gorgias</title>
 <author>
 <name>Plato</name>
 </author>
 <price>9.99</price>
 <disc>5</disc>
 </book>
</bookstore>

SERIALIZING OBJECTS IN XML
Serializing is the process of persisting an object to disk. Another part of your application, or even a separate
application, can deserialize the object, and it will be in the same state it was in prior to serialization. The
.NET Framework includes a couple of ways to do this.

This section looks at the System.Xml.Serialization namespace with the NuGet package System.Xml
.XmlSerializer, which contains classes used to serialize objects into XML documents or streams. This
means that an object’s public properties and public fi elds are converted into XML elements, attributes, or
both.

The most important class in the System.Xml.Serialization namespace is XmlSerializer. To serialize
an object, you fi rst need to instantiate an XmlSerializer object, specifying the type of the object to serial-
ize. Then you need to instantiate a stream/writer object to write the fi le to a stream/document. The fi nal step
is to call the Serialize method on the XMLSerializer, passing it the stream/writer object and the object
to serialize.

Data that can be serialized can be primitive types, fi elds, arrays, and embedded XML in the form of
XmlElement and XmlAttribute objects. To deserialize an object from an XML document, you reverse the
process in the previous example. You create a stream/reader and an XmlSerializer object and then pass
the stream/reader to the Deserialize method. This method returns the deserialized object, although it
needs to be cast to the correct type.

NOTE The XML serializer cannot convert private data—only public data—and it
cannot serialize cyclic object graphs. However, these are not serious limitations; by
carefully designing your classes, you should be able to easily avoid these issues. If you
do need to be able to serialize public and private data as well as an object graph con-
taining many nested objects, you can use the runtime or the data contract serialization
mechanisms.

Serializing Objects in XML ❘ 51

The sample code makes use of the following namespaces:

System

System.IO

System.Xml

System.Xml.Serialization

Serializing a Simple Object
Let’s start serializing a simple object. The class Product has XML attributes from the namespace System
.Xml.Serialization applied to specify whether a property should be serialized as XML element or attri-
bute. The XmlElement attribute specifi es the property to serialize as element; the XmlAttribute attribute
specifi es to serialize as attribute. The XmlRoot attribute specifi es the class to be serialized as the root ele-
ment (code fi le ObjectToXmlSerializationSample/Product.cs):

[XmlRoot]
public class Product
{
 [XmlAttribute(AttributeName = "Discount")]
 public int Discount { get; set; }

 [XmlElement]
 public int ProductID { get; set; }

 [XmlElement]
 public string ProductName { get; set; }

 [XmlElement]
 public int SupplierID { get; set; }

 [XmlElement]
 public int CategoryID { get; set; }

 [XmlElement]
 public string QuantityPerUnit { get; set; }

 [XmlElement]
 public Decimal UnitPrice { get; set; }

 [XmlElement]
 public short UnitsInStock { get; set; }

 [XmlElement]
 public short UnitsOnOrder { get; set; }

 [XmlElement]
 public short ReorderLevel { get; set; }

 [XmlElement]
 public bool Discontinued { get; set; }

 public override string ToString() =>
 $"{ProductID} {ProductName} {UnitPrice:C}";
}

With these attributes, you can infl uence the name, namespace, and type to be generated by using properties
of the attribute types.

52 ❘ BONUS CHAPTER 2 XML AND JSON

The following code sample creates an instance of the Product class, fi lls its properties, and serializes it to
a fi le. Creating the XmlSerializer requires the type of the class to be serialized to be passed with the con-
structor. The Serialize method is overloaded to accept a Stream, TextWriter, and XmlWriter, and the
object to be serialized (code fi le ObjectToXmlSerializationSample/Program.cs):

public static void SerializeProduct()
{
 var product = new Product
 {
 ProductID = 200,
 CategoryID = 100,
 Discontinued = false,
 ProductName = "Serialize Objects",
 QuantityPerUnit = "6",
 ReorderLevel = 1,
 SupplierID = 1,
 UnitPrice = 1000,
 UnitsInStock = 10,
 UnitsOnOrder = 0
 };

 FileStream stream = File.OpenWrite(ProductFileName);
 using (TextWriter writer = new StreamWriter(stream))
 {
 XmlSerializer serializer = new XmlSerializer(typeof(Product));
 serializer.Serialize(writer, product);
 }
}

The generated XML fi le lists the Product element with the Discount attribute and the other properties stored
as elements:

<?xml version="1.0" encoding="utf-8"?>
<Product xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" Discount="0">
 <ProductID>200</ProductID>
 <ProductName>Serialize Objects</ProductName>
 <SupplierID>1</SupplierID>
 <CategoryID>100</CategoryID>
 <QuantityPerUnit>6</QuantityPerUnit>
 <UnitPrice>1000</UnitPrice>
 <UnitsInStock>10</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>1</ReorderLevel>
 <Discontinued>false</Discontinued>
</Product>

There is nothing out of the ordinary here. You could use this XML fi le in any way that you would use an
XML document—transform it and display it as HTML, load an XmlDocument with it, or, as shown in the
example, deserialize it and create an object in the same state that it was in prior to serializing it (which is
exactly what you’re doing in the next step.

Creating a new object from the fi le is done by creating an XmlSerializer and invoking the Deserialize
method (code fi le ObjectToXmlSerializationSample/Program.cs):

public static void DeserializeProduct()
{
 Product product;
 using (var stream = new FileStream(ProductFileName, FileMode.Open))
 {
 var serializer = new XmlSerializer(typeof(Product));
 product = serializer.Deserialize(stream) as Product;
 }
 Console.WriteLine(product);
}

Serializing Objects in XML ❘ 53

When you run the application, the console shows the product ID, product name, and unit price.

NOTE To ignore properties from the XML serialization, you can use the XmlIgnore
attribute.

Serializing a Tree of Objects
What about situations in which you have derived classes and possibly properties that return an array?
XmlSerializer has that covered as well. The next example is just slightly more complex so that it can deal
with these issues.

In addition to the Product class, the BookProduct (derived from Product) and Inventory classes are cre-
ated. The Inventory class contains both of the other classes.

The BookProduct class derives from Product and adds the ISBN property. This property is
stored with the XML attribute Isbn as defi ned by the .NET attribute XmlAttribute (code fi le
ObjectToXmlSerializationSample/BookProduct.cs):

public class BookProduct : Product
{
 [XmlAttribute("Isbn")]
 public string ISBN { get; set; }
}

The Inventory class contains an array of inventory items. An inventory item can be a Product or a
BookProduct. The serializer needs to know all the derived classes that are stored within the array; other-
wise it can’t deserialize them. The items of the array are defi ned using the XmlArrayItem attribute (code fi le
ObjectToXmlSerializationSample/Inventory.cs):

public class Inventory
{
 [XmlArrayItem("Product", typeof(Product)),
 XmlArrayItem("Book", typeof(BookProduct))]
 public Product[] InventoryItems { get; set; }

 public override string ToString()
 {
 var outText = new StringBuilder();
 foreach (Product prod in InventoryItems)
 {
 outText.AppendLine(prod.ProductName);
 }
 return outText.ToString();
 }
}

In the SerializeInventory method after an Inventory object is created that is fi lled with a Product and
a BookProduct, the inventory is serialized (code fi le ObjectToXmlSerializationSample/Program.cs):

public static void SerializeInventory()
{
 var product = new Product
 {
 ProductID = 100,
 ProductName = "Product Thing",
 SupplierID = 10
 };

 var book = new BookProduct

54 ❘ BONUS CHAPTER 2 XML AND JSON

 {
 ProductID = 101,
 ProductName = "How To Use Your New Product Thing",
 SupplierID = 10,
 ISBN = "1234567890"
 };

 Product[] items = { product, book };
 var inventory = new Inventory
 {
 InventoryItems = items
 };

 using (FileStream stream = File.Create(InventoryFileName))
 {
 var serializer = new XmlSerializer(typeof(Inventory));
 serializer.Serialize(stream, inventory);
 }
}

The generated XML fi le defi nes an Inventory root element and the Product and Book child elements. The
BookProduct type is represented as Book element because the XmlItemArray attribute defi ned the Book
name for the BookProduct type:

<?xml version="1.0"?>
<Inventory xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <InventoryItems>
 <Product Discount="0">
 <ProductID>100</ProductID>
 <ProductName>Product Thing</ProductName>
 <SupplierID>10</SupplierID>
 <CategoryID>0</CategoryID>
 <UnitPrice>0</UnitPrice>
 <UnitsInStock>0</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>0</ReorderLevel>
 <Discontinued>false</Discontinued>
 </Product>
 <Book Discount="0" Isbn="1234567890">
 <ProductID>101</ProductID>
 <ProductName>How To Use Your New Product Thing</ProductName>
 <SupplierID>10</SupplierID>
 <CategoryID>0</CategoryID>
 <UnitPrice>0</UnitPrice>
 <UnitsInStock>0</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>0</ReorderLevel>
 <Discontinued>false</Discontinued>
 </Book>
 </InventoryItems>
</Inventory>

To deserialize the objects, you need to invoke the Deserialize method of the XmlSerializer: (code fi le
ObjectToXmlSerializationSample/Program.cs):

public static void DeserializeInventory()
{
 using (FileStream stream = File.OpenRead(InventoryFileName))
 {
 var serializer = new XmlSerializer(typeof(Inventory));

Serializing Objects in XML ❘ 55

 Inventory newInventory = serializer.Deserialize(stream) as Inventory;
 foreach (Product prod in newInventory.InventoryItems)
 {
 Console.WriteLine(prod.ProductName);
 }
 }
}

Serializing Without Attributes
Well, this all works great, but what if you don’t have access to the source code for the types that are being
serialized? You can’t add the attribute if you don’t have the source. There is another way: You can use the
XmlAttributes class and the XmlAttributeOverrides class. Together these classes enable you to accom-
plish the same thing as the previous sample but without adding the attributes. This section demonstrates
how this works.

For this example, the Inventory, Product, and derived BookProduct classes could also be in a separate
library. As the serialization is independent of that, and to make the sample structure easier, these classes
are in the same project as in the previous examples, but note that now there are no attributes added to the
Inventory class (code fi le ObjectToXmlSerializationWOAttributes/Inventory.cs):

public class Inventory
{
 public Product[] InventoryItems { get; set; }
 public override string ToString()
 {
 var outText = new StringBuilder();
 foreach (Product prod in InventoryItems)
 {
 outText.AppendLine(prod.ProductName);
 }
 return outText.ToString();
 }
}

The attributes from the Product and BookProduct classes are removed as well.

The implementation to do the serialization is like what was done before; the difference is that you use
a different overload on creating the XmlSerializer. This overload accepts XmlAttributeOverrides.
These overrides are coming from the helper method GetInventoryXmlAttributes (code fi le
ObjectToXmlSerializationWOAttributes/Program.cs):

public static void SerializeInventory()
{
 var product = new Product
 {
 ProductID = 100,
 ProductName = "Product Thing",
 SupplierID = 10
 };

 var book = new BookProduct
 {
 ProductID = 101,
 ProductName = "How To Use Your New Product Thing",
 SupplierID = 10,
 ISBN = "1234567890"
 };

56 ❘ BONUS CHAPTER 2 XML AND JSON

 Product[] products = { product, book };
 var inventory = new Inventory
 {
 InventoryItems = products
 };

 using (FileStream stream = File.Create(InventoryFileName))
 {
 var serializer = new XmlSerializer(typeof(Inventory),
 GetInventoryXmlAttributes());
 serializer.Serialize(stream, inventory);
 }
}

The helper method GetInventoryXmlAttributes returns the needed XmlAttributeOverrides.
Previously, the Inventory class had the XmlArrayItem attributes applied. They are now done cre-
ating XmlAttributes and adding XmlArrayItemAttributes to the XmlArrayItems collection.
Another change is that the Product and BookProduct classes had an XmlAttribute applied to the
Discount and ISBN properties. To defi ne the same behavior without applying the attributes to the
properties directly, XmlAttributeAttribute objects are created and assigned to the XmlAttribute
property of XmlAttributes objects. All these created XmlAttributes are then added to the
XmlAttributeOverrides that contains a collection of XmlAttributes. When you invoke the Add method
of XmlAttributeOverrides, you need the type where the attribute should be applied, the name of the
property, and the corresponding XmlAttributes (code fi le ObjectToXmlSerializationWOAttributes/
Program.cs):

private static XmlAttributeOverrides GetInventoryXmlAttributes()
{
 var inventoryAttributes = new XmlAttributes();
 inventoryAttributes.XmlArrayItems.Add(new XmlArrayItemAttribute("Book",
 typeof(BookProduct)));
 inventoryAttributes.XmlArrayItems.Add(new XmlArrayItemAttribute("Product",
 typeof(Product)));
 var bookIsbnAttributes = new XmlAttributes();
 bookIsbnAttributes.XmlAttribute = new XmlAttributeAttribute("Isbn");
 var productDiscountAttributes = new XmlAttributes();
 productDiscountAttributes.XmlAttribute =
 new XmlAttributeAttribute("Discount");
 var overrides = new XmlAttributeOverrides();
 overrides.Add(typeof(Inventory), "InventoryItems", inventoryAttributes);
 overrides.Add(typeof(BookProduct), "ISBN", bookIsbnAttributes);
 overrides.Add(typeof(Product), "Discount", productDiscountAttributes);
 return overrides;
}

When you run the application, the same XML content is created as before:

<?xml version="1.0"?>
<Inventory xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <InventoryItems>
 <Product Discount="0">
 <ProductID>100</ProductID>
 <ProductName>Product Thing</ProductName>
 <SupplierID>10</SupplierID>
 <CategoryID>0</CategoryID>
 <UnitPrice>0</UnitPrice>
 <UnitsInStock>0</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>0</ReorderLevel>
 <Discontinued>false</Discontinued>
 </Product>

LINQ to XML ❘ 57

 <Book Discount="0" Isbn="1234567890">
 <ProductID>101</ProductID>
 <ProductName>How To Use Your New Product Thing</ProductName>
 <SupplierID>10</SupplierID>
 <CategoryID>0</CategoryID>
 <UnitPrice>0</UnitPrice>
 <UnitsInStock>0</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>0</ReorderLevel>
 <Discontinued>false</Discontinued>
 </Book>
 </InventoryItems>
</Inventory>

NOTE .NET attribute types typically end with the name Attribute. This postfi x
can be ignored when applying the attribute using brackets. The compiler automati-
cally adds the postfi x if it is missing. A class that can be used as an attribute derives
from the base class Attribute—directly or indirectly. When you apply the attribute
XmlElement using brackets, the compiler instantiates the type XmlElementAttribute.
This naming becomes especially noticeable when applying the attribute XmlAttribute
using brackets. Behind the scenes, the class XmlAttributeAttribute is used.
How does the compiler differentiate this with the class XmlAttribute? The class
XmlAttribute is used to read XML attributes from the DOM tree, but it is not
a .NET attribute, as it does not derive from the base class Attribute. You can
read more information about attributes in Chapter 16, “Refl ection, Metadata, and
Dynamic Programming.”

With the deserialization code, the same attribute overrides are needed (code fi le
ObjectToXmlSerializationWOAttributes/Program.cs):

public static void DeserializeInventory()
{
 using (FileStream stream = File.OpenRead(InventoryFileName))
 {
 XmlSerializer serializer = new XmlSerializer(typeof(Inventory),
 GetInventoryXmlAttributes());
 Inventory newInventory = serializer.Deserialize(stream) as Inventory;

 foreach (Product prod in newInventory.InventoryItems)
 {
 Console.WriteLine(prod.ProductName);
 }
 }
}

The System.Xml.XmlSerialization namespace provides a very powerful toolset for serializing objects to
XML. By serializing and deserializing objects to XML instead of to binary format, you have the option to
do something else with this XML, which greatly adds to the fl exibility of your designs.

LINQ TO XML
Aren’t there already enough options available dealing with XML? Beware, with LINQ to XML another
option is available. LINQ to XML allows querying XML code that’s like querying object lists and the data-
base. LINQ to Objects are covered in Chapter 12, “Language Integrated Query,” and LINQ to Entities are
covered in Chapter 26, “Entity Framework Core.” Although the DOM tree offered by the XmlDocument and

58 ❘ BONUS CHAPTER 2 XML AND JSON

XPath queries offered by the XPathNavigator implement a standards-based approach to query XML data,
LINQ to XML offers the simple .NET variant for query—a variant that is like querying other data stores. In
addition to the methods offered by LINQ to Objects, LINQ to XML adds some XML specifi cs to this query
in the System.Xml.Linq namespace. LINQ to XML also offers easier creating of XML content than the
standards-based XmlDocument XML creation.

The following sections describe the objects that are available with LINQ to XML.

The sample code makes use of the following dependencies and namespaces:

Dependencies

NETStandard.Library

System.Xml.XDocument

Namespaces

System

System.Collections.Generic

System.Linq

System.Xml.Linq

static System.Console

XDocument
The XDocument represents an XML document like the XmlDocument class, but it is easier to work
with. The XDocument object works with the other new objects in this space, such as the XNamespace,
XComment, XElement, and XAttribute objects.

One of the more important members of the XDocument object is the Load method. Here it loads the fi le
hamlet.xml that is defi ned by the constant HamletFileName into memory:

XDocument doc = XDocument.Load(HamletFileName);

You can also pass a TextReader or XmlReader object into the Load method. From here, you can program-
matically work with the XML code as shown in the following code snippet to access the name of the root
element and check whether the root element has attributes (code fi le LinqToXmlSample/Program.cs):

XDocument doc = XDocument.Load(HamletFileName);
Console.WriteLine($"root name: {doc.Root.Name}");
Console.WriteLine($"has root attributes? {doc.Root.HasAttributes}");

This produces the following results:

root name: PLAY
has root attributes? False

Another important member to be aware of is the Save method, which, like the Load method, enables you to
save to a physical disk location or to a TextWriter or XmlWriter object:

XDocument doc = XDocument.Load(HamletFileName);
doc.Save(SaveFileName);

XElement
One object that you will work with frequently is the XElement object. With XElement objects, you can eas-
ily create single-element objects that are XML documents themselves, as well as fragments of XML. You

LINQ to XML ❘ 59

can use the Load method with the XElement similarly to how you use the Load method with the XDocument.
The following code snippet shows writing an XML element with its corresponding value to the console:

var company = new XElement("Company", "Microsoft Corporation");
Console.WriteLine(company);

In the creation of an XElement object, you can defi ne the name of the element as well as the value used in
the element. In this case, the name of the element is <Company>, and the value of the <Company> element is
Microsoft Corporation. Running this in a console application produces the following result:

<Company>Microsoft Corporation</Company>

You can create an even more complete XML document using multiple XElement objects, as shown in the
following example (code fi le LinqToXmlSample/Program.cs):

public static void CreateXml()
{
 var company =
 new XElement("Company",
 new XElement("CompanyName", "Microsoft Corporation"),
 new XElement("CompanyAddress",
 new XElement("Address", "One Microsoft Way"),
 new XElement("City", "Redmond"),
 new XElement("Zip", "WA 98052-6399"),
 new XElement("State", "WA"),
 new XElement("Country", "USA")));
 Console.WriteLine(company);
}

What’s extremely nice with this API is that the hierarchy of the XML is represented by the API. The fi rst
instantiation of the XElement passes the string "Company" to the fi rst parameter. This parameter is of type
XName that represents the name of the XML element. The second parameter is another XElement. This sec-
ond XElement defi nes the XML child element of the Company. This second element defi nes "CompanyName"
as XName, and "Microsoft Corporation" as its value. The XElement specifying the company address is
another child of the Company element. All the other XElement objects that follow are direct child objects
of CompanyAddress. The constructor allows passing any number of objects as defi ned by the type params
object[]. All these objects are treated as children.

Running this application produces this result:

<Company>
 <CompanyName>Microsoft Corporation</CompanyName>
 <CompanyAddress>
 <Address>One Microsoft Way</Address>
 <City>Redmond</City>
 <Zip>WA 98052-6399</Zip>
 <State>WA</State>
 <Country>USA</Country>
 </CompanyAddress>
</Company>

NOTE The constructor syntax of XElement allows easy creation of hierarchical
XML. This makes it easy to create XML out of LINQ queries (transforming object
trees to XML), as is shown later in this section, and you can also transform one XML
syntax to another XML syntax.

60 ❘ BONUS CHAPTER 2 XML AND JSON

XNamespace
XNamespace is an object that represents an XML namespace, and it is easily applied to elements within your
document. For instance, you can take the previous example and easily apply a namespace to the root ele-
ment by creating an XNamespace object (code fi le LinqToXmlSample/Program.cs):

public static void WithNamespace()
{
 XNamespace ns = "http://www.cninnovation.com/samples/2018";
 var company =
 new XElement(ns + "Company",
 new XElement("CompanyName", "Microsoft Corporation"),
 new XElement("CompanyAddress",
 new XElement("Address", "One Microsoft Way"),
 new XElement("City", "Redmond"),
 new XElement("Zip", "WA 98052-6399"),
 new XElement("State", "WA"),
 new XElement("Country", "USA")));
 Console.WriteLine(company);
}

In this case, an XNamespace object is created by assigning it a value of http://www.cninnovation.com/
samples/2018. From there, it is used in the root element <Company> with the instantiation of the XElement
object.

This produces the following result:

<Company xmlns="http://www.cninnovation.com/samples/2018">
<CompanyName xmlns="">Microsoft Corporation</CompanyName>
 <CompanyAddress xmlns="">
 <Address>One Microsoft Way</Address>
 <City>Redmond</City>
 <Zip>WA 98052-6399</Zip>
 <State>WA</State>
 <Country>USA</Country>
 </CompanyAddress>
</Company>

NOTE The XNamespace allows creation by assigning a string to the XNamespace
instead of using the new operator because this class implements an implicit cast opera-
tor from string. It’s also possible to use the + operator with the XNamespace object by
having a string on the right side because of an implementation of the + operator that
returns an XName. Operator overloading is explained in Chapter 6, “Operators and
Casts.”

In addition to dealing with only the root element, you can also apply namespaces to all your elements, as
shown in the following example (code fi le LinqToXmlSample/Program.cs):

public static void With2Namespace()
{
 XNamespace ns1 = "http://www.cninnovation.com/samples/2018";
 XNamespace ns2 = "http://www.cninnovation.com/samples/2018/address";
 var company =
 new XElement(ns1 + "Company",
 new XElement(ns2 + "CompanyName", "Microsoft Corporation"),
 new XElement(ns2 + "CompanyAddress",
 new XElement(ns2 + "Address", "One Microsoft Way"),
 new XElement(ns2 + "City", "Redmond"),
 new XElement(ns2 + „Zip", „WA 98052-6399"),

LINQ to XML ❘ 61

 new XElement(ns2 + "State", "WA"),
 new XElement(ns2 + "Country", "USA")));
 Console.WriteLine(company);
}

which produces the following result:

<Company xmlns="http://www.cninnovation.com/samples/2018">
<CompanyName xmlns="http://www.cninnovation.com/samples/2018/address">
 Microsoft Corporation</CompanyName>
 <CompanyAddress xmlns="http://www.cninnovation.com/samples/2018/address">
 <Address>One Microsoft Way</Address>
 <City>Redmond</City>
 <Zip>WA 98052-6399</Zip>
 <State>WA</State>
 <Country>USA</Country>
 </CompanyAddress>
</Company>

In this case, you can see that the subnamespace was applied to everything you specifi ed except for
the <Address>, <City>, <State>, and <Country> elements because they inherit from their parent,
<CompanyAddress>, which has the namespace declaration.

XComment
The XComment object enables you to easily add XML comments to your XML documents. The following
example shows the addition of a comment to the top of the document and within the Company element (code
fi le LinqToXmlSample/Program.cs):

public static void WithComments()
{
 var doc = new XDocument();
 XComment comment = new XComment("Sample XML for Professional C#.");
 doc.Add(comment);
 var company =
 new XElement("Company",
 new XElement("CompanyName", "Microsoft Corporation"),
 new XComment("A great company"),
 new XElement("CompanyAddress",
 new XElement("Address", "One Microsoft Way"),
 new XElement("City", "Redmond"),
 new XElement("Zip", "WA 98052-6399"),
 new XElement("State", "WA"),
 new XElement("Country", "USA")));
 doc.Add(company);
 Console.WriteLine(doc);
}

When you run the application and call the WithComments method, you can see the generated XML
comments:

<!--Sample XML for Professional C#.-->
<Company>
 <CompanyName>Microsoft Corporation</CompanyName>
 <!–A great company–>
 <CompanyAddress>
 <Address>One Microsoft Way</Address>
 <City>Redmond</City>
 <Zip>WA 98052-6399</Zip>
 <State>WA</State>
 <Country>USA</Country>
 </CompanyAddress>
</Company>

62 ❘ BONUS CHAPTER 2 XML AND JSON

XAttribute
In addition to elements, another important factor of XML is attributes. You add and work with attributes
by using the XAttribute object. The following example shows the addition of an attribute to the root
<Company> node (code fi le LinqToXmlSample/Program.cs):

public static void WithAttributes()
{
 var company =
 new XElement("Company",
 new XElement("CompanyName", "Microsoft Corporation"),
 new XAttribute("TaxId", "91-1144442"),
 new XComment("A great company"),
 new XElement("CompanyAddress",
 new XElement("Address", "One Microsoft Way"),
 new XElement("City", "Redmond"),
 new XElement("Zip", "WA 98052-6399"),
 new XElement("State", "WA"),
 new XElement("Country", "USA")));
 Console.WriteLine(company);
}

The attribute shows up as shown with the Company element:

Now that you can get your XML documents into an XDocument object and work with the various parts of
this document, you can also use LINQ to XML to query your XML documents and work with the results.

Querying XML Documents with LINQ
You will notice that querying a static XML document using LINQ to XML takes almost no work at all.
The following example makes use of the hamlet.xml fi le and queries to get all the players (actors) who
appear in the play. Each of these players is defi ned in the XML document with the <PERSONA> element. The
Descendants method of the XDocument class returns an IEnumerable<XElement> that contains all the
PERSONA elements within the tree. With every A PERSONA element of this tree, the A Value property is accessed
with the LINQ query and written to the resulting collection (code fi le LinqToXmlSample/Program.cs):

public static void QueryHamlet()
{
 XDocument doc = XDocument.Load(HamletFileName);
 IEnumerable<string> persons = (from people in doc.Descendants("PERSONA")
 select people.Value).ToList();
 Console.WriteLine($"{persons.Count()} Players Found");
 Console.WriteLine();

 foreach (var item in persons)
 {
 Console.WriteLine(item);
 }
}

When you run the application, you can see the following result from the play Hamlet. You can’t say you’re
not learning literature from a C# programming book:

26 Players Found
CLAUDIUS, king of Denmark.
HAMLET, son to the late king, and nephew to the present king.
POLONIUS, lord chamberlain.
HORATIO, friend to Hamlet.
LAERTES, son to Polonius.
LUCIANUS, nephew to the king.
VOLTIMAND
CORNELIUS

LINQ to XML ❘ 63

ROSENCRANTZ
GUILDENSTERN
OSRIC
A Gentleman
A Priest.
MARCELLUS
BERNARDO
FRANCISCO, a soldier.
REYNALDO, servant to Polonius.
Players.
Two Clowns, grave-diggers.
FORTINBRAS, prince of Norway.
A Captain.
English Ambassadors.
GERTRUDE, queen of Denmark, and mother to Hamlet.
OPHELIA, daughter to Polonius.
Lords, Ladies, Officers, Soldiers, Sailors, Messengers, and other Attendants.
Ghost of Hamlet's Father.

Querying Dynamic XML Documents
A lot of dynamic XML documents are available online these days. You can fi nd blog feeds, podcast feeds,
and more that provide an XML document by sending a request to a specifi c URL endpoint. You can view
these feeds either in the browser, through an RSS aggregator, or as pure XML. The next example demon-
strates how to work with an Atom feed directly from your code.

Here, you can see that the Load method of the XDocument points to a URL where the XML is retrieved.
With the Atom feed, the root element is a feed element that contains direct children with information about
the feed and a list of entry elements for every article. What might not be missed when accessing the ele-
ments is the Atom namespace http://www.w3.org/2005/Atom, otherwise the results will be empty.

With the sample code, fi rst the values of the title and subtitle elements are accessed that are defi ned as
child elements of the root element. The Atom feed can contain multiple link elements. When you use
a LINQ query, only the fi rst link element that contains the rel attribute with the value alternate is
retrieved. After writing overall information about the feed to the console, all entry elements are retrieved
to create an anonymous type with Title, Published, Summary, Url, and Comments properties (code fi le
LinqToXmlSample/Program.cs):

public static void QueryFeed()
{
 try
 {
 var httpClient = new HttpClient();
 using (Stream stream = await httpClient.GetStreamAsync(
 "http://csharp.christiannagel.com/feed/atom/"))
 {
 XNamespace ns = "http://www.w3.org/2005/Atom";
 XDocument doc = XDocument.Load(stream);

 Console.WriteLine($"Title: {doc.Root.Element(ns + "title").Value}");
 Console.WriteLine($"Subtitle: {doc.Root.Element(
 ns + "subtitle").Value}");
 string url = doc.Root.Elements(ns + "link")
 .Where(e => e.Attribute("rel").Value == "alternate")
 .FirstOrDefault()
 ?.Attribute("href")?.Value;

 Console.WriteLine($"Link: {url}");
 Console.WriteLine();

 var queryPosts =

64 ❘ BONUS CHAPTER 2 XML AND JSON

 from myPosts in doc.Descendants(ns + "entry")
 select new
 {
 Title = myPosts.Element(ns + "title")?.Value,
 Published = DateTime.Parse(
 myPosts.Element(ns + "published")?.Value),
 Summary = myPosts.Element(ns + "summary")?.Value,
 Url = myPosts.Element(ns + "link")?.Value,
 Comments = myPosts.Element(ns + "comments")?.Value
 };

 foreach (var item in queryPosts)
 {
 Console.string shortTitle = item.Title.Length > 50 ?
 item.Title.Substring(0, 50) + "..." : item.Title;
 Console.WriteLine(shortTitle);
 }
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
}

Run the application to see this overall information for the feed:

Title: csharp.christiannagel.com
Subtitle: Christian Nagel's Professional C# with UWP, .NET Core, and more
Link: http://csharp.christiannagel.com

and the results of the query showing all titles:

Local Functions – What’s the Value?
Array Pool
Windows Template Studio
.NET Core with csproj
C# 7.0 – What’s New
View Components with ASP.NET Core 1.1
Workshop with Updates for C# 7.0 and Visual Studio...
20 Years Visual Studio and 16 Years Professional C...
C# 7.0 – Pattern Matching
C# 7.0 and ASP.NET Core at BASTA! In Frankfurt, Ge...

Transforming to Objects
Using LINQ to SQL, it’s easy to transform an XML document to an object tree. The Hamlet fi le contains
all personas of the play. Some personas that belong to groups are grouped within PGROUP elements. A group
contains the name of the group within the GRPDESC element, and personas of the group within PERSONA
elements. The following sample creates objects for every group and adds the group name and personas to
the object. The code sample makes use of the LINQ method syntax instead of the LINQ query for using an
overload of the Select method that offers the index parameter. The index goes into the newly created object
as well. The Descendants method of the XDocument fi lters all the PGROUP elements. Every group is selected
with the Select method, and there an anonymous object is created that fi lls the Number, Description, and
Characters properties. The Characters property itself is a list of all values of the PERSONA elements within A
the group (code fi le LinqToXmlSample/Program.cs):

public static void TransformingToObjects()
{
 XDocument doc = XDocument.Load(HamletFileName);
 var groups =
 doc.Descendants("PGROUP")
 .Select((g, i) =>

LINQ to XML ❘ 65

 new
 {
 Number = i + 1,
 Description = g.Element("GRPDESCR").Value,
 Characters = g.Elements("PERSONA").Select(p => p.Value)
 });

 foreach (var group in groups)
 {
 Console.WriteLine(group.Number);
 Console.WriteLine(group.Description);

 foreach (var name in group.Characters)
 {
 Console.WriteLine(name);
 }
 Console.WriteLine();
 }
}

Run the application to invoke the TransformingToObjects method and see two groups with their
personas:

1
courtiers.
VOLTIMAND
CORNELIUS
ROSENCRANTZ
GUILDENSTERN
OSRIC

2
officers.
MARCELLUS
BERNARDO

Transforming to XML
Because it’s easy to create XML with the XElement class and its fl exible constructor to pass any number of
child elements, the previous example can be changed to create XML instead of an object list. The query is
the same as in the previous code sample. What’s different is that a new XElement passing the name ham-
let is created. hamlet is the root element of this generated XML. The child elements are defi ned by the
result of the Select method that follows the Descendants method to select all PGROUP elements. For every
group, a new group XElement gets created. Every group contains an attribute with the group number, an
attribute with the description, and a characters element that contains a list of name elements (code fi le
LinqToXmlSample/Program.cs):

public static void TransformingToXml()
{
 XDocument doc = XDocument.Load(HamletFileName);
 var hamlet =
 new XElement("hamlet",
 doc.Descendants("PGROUP")
 .Select((g, i) =>
 new XElement("group",
 new XAttribute("number", i + 1),
 new XAttribute("description", g.Element("GRPDESCR").Value),
 new XElement("characters",
 g.Elements("PERSONA").Select(p => new XElement("name", p.Value))
))));
 Console.WriteLine(hamlet);
}

66 ❘ BONUS CHAPTER 2 XML AND JSON

When you run the application, you can see this generated XML fragment:

<hamlet>
 <group number="1" description="courtiers.">
 <characters>
 <name>VOLTIMAND</name>
 <name>CORNELIUS</name>
 <name>ROSENCRANTZ</name>
 <name>GUILDENSTERN</name>
 <name>OSRIC</name>
 </characters>
 </group>
 <group number="2" description="officers.">
 <characters>
 <name>MARCELLUS</name>
 <name>BERNARDO</name>
 </characters>
 </group>
</hamlet>

JSON
After taking a long tour through many XML features of the .NET Framework, let’s get into the JSON data
format. Json.NET offers a large API where you can use JSON to do many aspects you’ve seen in this chapter T
with XML, and some of these will be covered here.

The sample code makes use of the following dependency and namespaces:

Dependency

Newtonsoft.Json

Namespaces

Newtonsoft.Json

Newtonsoft.Json.Linq

System

System.IO

System.Xml.Linq

Creating JSON
To create JSON objects manually with JSON.NET, several types are available in the Newtonsoft.Json
.Linq namespace. A JObject represents a JSON object. JObject is a dictionary with strings for the key
(property names with .NET objects), and JToken for the value. This way JObject offers indexed access. An
array of JSON objects is defi ned by the JArray type. Both JObject and JArray derive from the abstract
base class JContainer that contains a list of JToken objects.

The following code snippet creates the JObject book1 and book2 objects by fi lling title and publisher
values using indexed dictionary access. Both book objects are added to a JArray (code fi le JsonSample/
Program.cs):

public static void CreateJson()
{
 var book1 = new JObject();
 book1["title"] = "Professional C# 7 and .NET Core 2.0";
 book1["publisher"] = "Wrox Press";

JSON ❘ 67

 var book2 = new JObject();
 book2["title"] = "Professional C# 6 and .NET Core 1.0";
 book2["publisher"] = "Wrox Press";

 var books = new JArray();
 books.Add(book1);
 books.Add(book2);

 var json = new JObject();
 json["books"] = books;
 Console.WriteLine(json);
}

Run the application to see this JSON code generated:

{
 "books": [
 {
 "title": "Professional C# 7 and .NET Core 2.0",
 "publisher": "Wrox Press"
 },
 {
 "title": "Professional C# 6 and .NET Core 1.0",
 "publisher": "Wrox Press"
 }
]
}

Converting Objects
Instead of using JsonObject and JsonArray to create JSON content, you can also use the JsonConvert
class. JsonConvert enables you to create JSON from an object tree and convert a JSON string back into an
object tree.

With the sample code in this section, you create an Inventory object from the helper method
GetInventoryObject (code fi le JsonSample/Program.cs):

public static Inventory GetInventoryObject() =>
 new Inventory
 {
 InventoryItems = new Product[]
 {
 new Product
 {
 ProductID = 100,
 ProductName = "Product Thing",
 SupplierID = 10
 },
 new BookProduct
 {
 ProductID = 101,
 ProductName = "How To Use Your New Product Thing",
 SupplierID = 10,
 ISBN = "1234567890"
 }
 }
};

The method ConvertObject retrieves the Inventory object and converts it to JSON using JsonConvert
.SerializeObject. The second parameter of SerializeObject allows formatting to be defi ned None
or Indented. None is best for keeping whitespace to a minimum; Indented allows for better readability.
The JSON string is written to the console before it is converted back to an object tree using JsonConvert

68 ❘ BONUS CHAPTER 2 XML AND JSON

.DeserializeObject. DeserializeObject has a few overloads. The generic variant returns the generic
type instead of an object, so a cast is not necessary:

public static void ConvertObject()
{
 Inventory inventory = GetInventoryObject();
 string json = JsonConvert.SerializeObject(inventory, Formatting.Indented);
 Console.WriteLine(json);
 Console.WriteLine();
 Inventory newInventory = JsonConvert.DeserializeObject<Inventory>(json);
 foreach (var product in newInventory.InventoryItems)
 {
 Console.WriteLine(product.ProductName);
 }
}

Running the application shows the generated console output of the JSON generated Inventory type:

{
 "InventoryItems": [
 {
 "Discount": 0,
 "ProductID": 100,
 "ProductName": "Product Thing",
 "SupplierID": 10,
 "CategoryID": 0,
 "QuantityPerUnit": null,
 "UnitPrice": 0.0,
 "UnitsInStock": 0,
 "UnitsOnOrder": 0,
 "ReorderLevel": 0,
 "Discontinued": false
 },
 {
 "ISBN": "1234567890",
 "Discount": 0,
 "ProductID": 101,
 "ProductName": "How To Use Your New Product Thing",
 "SupplierID": 10,
 "CategoryID": 0,
 "QuantityPerUnit": null,
 "UnitPrice": 0.0,
 "UnitsInStock": 0,
 "UnitsOnOrder": 0,
 "ReorderLevel": 0,
 "Discontinued": false
 }
]
}

Converting back JSON to objects, the product names are shown:

Product Thing
How To Use Your New Product Thing

Serializing Objects
Like the XmlSerializer, you can also stream the JSON string directly to a fi le. The following code
snippet retrieves the Inventory object and writes it to a fi le stream using the JsonSerializer (code fi le
JsonSample/Program.cs):

public static void SerializeJson()
{
 using (StreamWriter writer = File.CreateText(InventoryFileName))

JSON ❘ 69

 {
JsonSerializer serializer = JsonSerializer.Create(

 new JsonSerializerSettings { Formatting = Formatting.Indented });
 serializer.Serialize(writer, GetInventoryObject());
 }
}

You can convert JSON from a stream by calling the Deserialize method on the JsonSerializer:

public static void DeserializeJson()
{
 using (StreamReader reader = File.OpenText(InventoryFileName))
 {
 JsonSerializer serializer = JsonSerializer.Create();
 var inventory = serializer.Deserialize(reader, typeof(Inventory))
 as Inventory;

 foreach (var item in inventory.InventoryItems)
 {
 Console.WriteLine(item.ProductName);
 }
 }
}

Iterating Through JSON Nodes
To access information about all the JSON nodes, you can use the JsonTextReader and iterate through the
nodes to invoke the Read method. When you use the JsonTextReader, you can see the type of the node
with the TokenType property, access path, value, and lines and character positions in the JSON fi le (code
fi le JsonSample/Program.cs):

public static void ReaderSample()
{
 StreamReader textReader = File.OpenText(InventoryFileName);
 using (JsonTextReader jsonReader = new JsonTextReader(textReader)
 { CloseInput = true })
 {
 while (jsonReader.Read())
 {
 Console.Write($"token: {jsonReader.TokenType}, ");
 if (!string.IsNullOrEmpty(jsonReader.Path))
 {
 Console.Write($"path: {jsonReader.Path}, ");
 }
 if (!string.IsNullOrEmpty(jsonReader.Value?.ToString()))
 {
 Console.Write($"value: {jsonReader.Value}");
 }
 Console.WriteLine();
 }
 }
}

When you run the application, an extract of the output is shown—with token types such as StartObject,
Propertyname, StartArray, and Integer tokens containing a value:

token: StartObject,
token: PropertyName, path: InventoryItems, value: InventoryItems
token: StartArray, path: InventoryItems,
token: StartObject, path: InventoryItems[0],
token: PropertyName, path: InventoryItems[0].Discount, value: Discount
token: Integer, path: InventoryItems[0].Discount, value: 0
token: PropertyName, path: InventoryItems[0].ProductID, value: ProductID
token: Integer, path: InventoryItems[0].ProductID, value: 100

70 ❘ BONUS CHAPTER 2 XML AND JSON

SUMMARY
This chapter explored many aspects of the System.Xml namespace. You looked at how to read and write
XML documents using the very fast XmlReader- and XmlWriter-based classes. You saw how the DOM is
implemented in .NET and how to use the power of DOM, with the XmlDocument class. In addition, you vis-
ited XPath, serialized objects to XML, and were able to bring them back with just a couple of method calls.

By using LINQ to XML, you’ve seen how to easily create XML documents and fragments and create queries
using XML data.

Aside of XML, you’ve seen how to serialize objects using JSON with Json.NET, and you’ve parsed JSON
strings to build .NET objects.

