
WHAT’S IN THIS CHAPTER?

➤ Defi ning bots
➤ Creating dialog bots
➤ Using form fl ow
➤ Understanding users with LUIS

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com on the Download
Code tab. The source code is also available at https://github.com/ProfessionalCSharp/
ProfessionalCSharp7 in the directory BotsAndCognitive.

The code for this chapter is divided into the following major examples:

➤ SimpleBot
➤ LuisBot

WHAT IS A BOT?
A bot is a software agent that acts for a user or other programs. In the past when you needed support
for a product, but you weren’t ready to get in contact with a real person, you had to read an FAQ
document. If that didn’t work, you had to try to get in contact with a person on a phone hotline or a
chat window. Depending on your support agreement, you might have needed to wait in a queue for
several minutes. (I also had an experience with waiting hours instead of minutes.) Now, you can ask a
bot a question, and the bot can answer like a real person. If the bot doesn’t know the answer, the task
can be forwarded to a real person. The bot can learn. When the real person provides results, the bot
retains the information for the next time a customer asks that same question.

A bot can not only be used to answer support requests. Bots can offer information, take orders, help
the user while the user is working in a program, create tweets on Twitter, chat with users, take user
requests to do actions like playing music, add information to a calendar, and more. Bots can also alert
the user, such as sending a notifi cation that to be on time for a calendar event that the user should
leave early from the current location because of high traffi c or a delayed train.

100 ❘ BONUS CHAPTER 4 BOTS AND COGNITIVE SERVICES

Bots can be implemented in your app, but you can also use other channels where your bots can be activated.
For example, bots can be used within Skype, Facebook, Microsoft Teams, Slack, and many other channels.

You can implement ways for the user to communicate with bots by entering free-form text, using controls to
select from lists, clicking buttons, and communicating via speech.

If you already have Web APIs (covered in Chapter 32, “Web API”), you can use them from your apps and
your bots. With some scenarios, bots might be the main use for your Web APIs.

This chapter makes use of Microsoft Azure—to create and use bots as well as to use Azure Cognitive ser-
vices. If you don’t already have an Azure account, you can start with a 30-day free trial at https://azure
.microsoft.com/free/. After that time, several services remain free (like shared website hosting with an
azurewebsites.net domain), but you can switch any time to a
paid model. What does it cost after the free time? Bot services can
be hosted using App Services where you pay for a specifi c plan
that includes a certain amount of CPU, memory, and disk sizes,
or you can use a consumption-based plan where you pay for the
number of calls used. Depending on the load and usage of your
bots, one or the other variant can be the best, but the implementa-
tion is nearly the same. Using the consumption plan you’re more
restricted on the memory needed, and there’s a maximum time
your service may run with every invocation.

Let’s start creating a simple bot before we get into more complex
scenarios.

CREATING A DIALOG BOT
You can create a bot directly in the Microsoft Azure portal
https://portal.azure.com. In the Azure Marketplace, in the
AI + Cognitive Services category you can fi nd the Web Bot App
and Functions Bot. With the Functions Bot, you can select either a
Consumption Plan or an App Service Plan. With the Consumption
Plan you pay for use, and with the App Service Plan you reserve
an App Service with allocated CPU and memory. With a Web Bot
App, you need an App Service Plan; paying based on consumption
is not an option.

The Functions Bot is based on Azure Functions, which are cov-
ered in Chapter 32. The Functions Bot makes use of C# script
(C# scripts with the fi le extension csx). C# Script makes it easy to
make code changes in the web browser using the Azure Portal.

When you use the Web Bot App, the project is based on the Bot
Builder SDK (https://dev.botframework.com/). Select the
Web Bot App to create your fi rst Bot Service (see Figure BC4-1).
You need to specify the name of the bot that needs to be unique.
In case you have multiple Azure subscriptions, you can select the
one your bot should be associated with. Resource groups are use-
ful for grouping resources. If you create resources for a test, put
them in the same group. This way, you can delete all the resources
after you fi nished the test simply by deleting the resource group;
you don’t need to search for all the resources separately.

FIGURE BC4-1

Creating a Dialog Bot ❘ 101

Pay attention to the pricing tier offered. Click the pricing information to see the full pricing details; from
there you can select the best pricing tier. At the time of this writing, Bot Services offer a free tier that is
limited to 10,000 messages a month. This option might serve your purpose.

The App name is the domain name that will be used to access the service via URL. When you select the Bot
template, you have the choice for some predefi ned templates to create a Bot. You start with the Basic (C#)
template to create a simple bot. With a Web Bot App, you also need to specify the App Service Plan. When
you create a bot, you also need an Azure Storage account. This one is not only used as storage for diagnostic
information but also as storage for the bot state. By default, Azure Table Storage is used, but you can change
this easily to use the Azure Cosmos DB.

As the bot is created using the template, you can immediately test it from the portal (see Figure BC4-2).
When you navigate to the bot, you can select the option Test in Web Chat, and can send messages to the bot.
The bot does nothing more than to echo the messages, and it adds a number that is incremented while the
communication goes on. This number can be reset by sending the reset message.

FIGURE BC4-2

Directly from the portal you can download the source code in a zip fi le. You can open the downloaded
source code using Visual Studio and start communication with the bot using the Bot Framework Emulator.

Let’s get into the source code of the bot.

102 ❘ BONUS CHAPTER 4 BOTS AND COGNITIVE SERVICES

NOTE At the time of this writing, the Microsoft Bot Builder SDK v3 that is used with
the Azure Bot Services is based on the .NET Framework; a .NET Core version is not
yet available. Bots are created using ASP.NET Web API; you’ll see small differences
compared to the Web API you’ve read in Chapter 34, “Web API.” A .NET Core
version is planned for version 4, but currently neither a Beta nor an Alpha version
is available. Check https://github.com/ProfessionalCSharp/MoreSamples for
additional samples as the .NET Core version becomes available.

Confi guration the State Service
With the startup of the app, the dependency injection (DI) container for the bot is confi gured. The Microsoft
Bot Builder v3 uses Autofac for the DI container. The Conversation class (namespace Microsoft.Bot
.Builder.Dialogs) holds a reference to the DI container that can be accessed using the Container
property. To confi gure the container, the UpdateContainer method of the Conversation class is invoked.
The UpdateContainer method defi nes a parameter of type Action delegate with a ContainerBuilder.
Autofac supports chaining of modules. In a module, you can confi gure a list of services by invoking the
RegisterModule method and passing a new AzureModule instance. The AzureModule class registers a
list of services needed for the bot functionality. Next, a TableBotDataStore object is created that is used
to store the state of the bot in the Azure Table Storage. The Register method of the ContainerBuilder
registers the TableBotDataStore for the IBotDataStore contract interface (code fi le DialogBotSample/
Global.asax.cs):

protected void Application_Start()
{
 Conversation.UpdateContainer(
 builder =>
 {
 builder.RegisterModule(new AzureModule(Assembly.GetExecutingAssembly()));

 var store = new TableBotDataStore(
 ConfigurationManager.AppSettings["AzureWebJobsStorage"]);

 builder.Register(c => store)
 .Keyed<IBotDataStore<BotData>>(AzureModule.Key_DataStore)
 .AsSelf()
 .SingleInstance();

 });
 GlobalConfiguration.Configure(WebApiConfig.Register);
}

NOTE The Microsoft Bot Builder SDK v3 is using Autofac for the dependency
injection container. This will likely change to Microsoft.Extensions
.DependencyInjection with the next version of the SDK. The RegisterModule
method of Autofac is a method to register a list of services. With the DI container
Microsoft.Extensions.DependencyInjection, you’ve seen similar functionality
with extension methods such as AddMvc. Instead of using the Register method and
the SingleInstance method, the AddSingleton extension method can be used
with the Microsoft container.

Creating a Dialog Bot ❘ 103

Instead of using Azure Table Storage, you can use Azure Cosmos DB or SQL Database. To change the
Azure Table Storage to Cosmos DB, you just need to create a DocumentDbBotDataStore instead of the
TableBotDataStore and register this one:

var store = new DocumentDbBotDataStore(docDbEmulatorUri, docDbEmulatorKey);
builder.Register(c => store)
 .Keyed<IBotDataStore<BotData>>(AzureModule.Key_DataStore)
 .AsSelf()
 .SingleInstance();

Receiving Bot Messages
Messages are received in the Web API controller. With ASP.NET Web API, the Web API controller
derives from the base class ApiController. As the controller is named MessagesController, the URL
to the controller is /api/Messages. The MessagesController has the BotAuthentication attribute
annotated. This attribute specifi es that only registered channels can be used to access the bot. While
testing the bot with a local emulator, you can remove this attribute, but you should add it back before
deploying to Azure Services. The MessagesController defi nes only a single public Post method. This
method is the entry point for the communication; the client sends an HTTP POST request containing the
information for an Activity. The Activity is the heart of the communication between the client and the
bot service. The content is defi ned by the schema application/vnd.microsoft.activity and contains
the members participating with the communication, information about the channel that is used, and data
entered or spoken by the user.

Activities received from the channel are not only messages entered by the user but also system messages.
System messages are handled in the HandleSystemMessage method. Here you can implement code when
users are added to the conversion, show some information when a user types, and react to ping requests.
Normal user-initiated messages are of type ActivityTypes.Message. When such a message arrives, the
Conversation class is used to send a dialog to keep the conversation running. With the code as it is
created from the template, the EchoDialog class is used. As the EchoDialog class only returns the same
information, the sample code gives the user options to reserve a table in a restaurant or to order from the
menu. This is implemented in the RootDialog class used here (code fi le DialogBotSample/Controllers/
MessagesController.cs):

[BotAuthentication]
public class MessagesController : ApiController
{
 [ResponseType(typeof(void))]
 public virtual async Task<HttpResponseMessage> Post(
 [FromBody] Activity activity)
 {
 if (activity == null) throw new ArgumentNullException(nameof(activity));

 if (activity.GetActivityType() == ActivityTypes.Message)
 {
 await Conversation.SendAsync(activity, () => new RootDialog());
 }
 else
 {
 HandleSystemMessage(activity);
 }
 return Request.CreateResponse(HttpStatusCode.OK);
 }

 private Activity HandleSystemMessage(Activity message)
 {
 if (message.Type == ActivityTypes.DeleteUserData)
 {
 }

104 ❘ BONUS CHAPTER 4 BOTS AND COGNITIVE SERVICES

 else if (message.Type == ActivityTypes.ConversationUpdate)
 {
 }
 else if (message.Type == ActivityTypes.ContactRelationUpdate)
 {
 }
 else if (message.Type == ActivityTypes.Typing)
 {
 }
 else if (message.Type == ActivityTypes.Ping)
 {
 }
 return null;
 }
}

Defi ning a Dialog
A dialog needs to be serializable (marked with the Serializable attribute) and implement the generic
interface IDialog. This interface defi nes the method StartAsync that is invoked when the dialog is started.
Within the implementation of this method, invoking the Wait on the IDialogContext suspends the
dialog until the user has sent a message. When a message is received, the method MessageReceivedAsync
is invoked. The message received is accessed from the IAwaitable; this contains an IMessageActivity
with the input from the user that can be accessed using the Text property. If the user entered text contain-
ing “help” or “support,” the request is forwarded to the SupportDialog. If any other text is entered, the
ShowOptions method is invoked where the user gets information about the options to select (code fi le
DialogBotSample/Dialogs/RootDialog.cs):

[Serializable]
public class RootDialog : IDialog<object>
{
 private const string FindNumberOption = "find a number";
 private const string OrderLunchOption = "order lunch";
 private const string ReserveTableOption = "reserve a table";

 public Task StartAsync(IDialogContext context)
 {
 context.Wait(MessageReceivedAsync);
 return Task.CompletedTask;
 }

 public async Task MessageReceivedAsync(IDialogContext context,
 IAwaitable<IMessageActivity> result)
 {
 var message = await result;

 if (message.Text.ToLower().Contains("help") ||
 message.Text.ToLower().Contains("support"))
 {

await context.Forward(new SupportDialog(), ResumeAfterSupportDialog,
 message, CancellationToken.None);
 }
 else
 {
 ShowOptions(context);
 }
 }
 //...
}

Creating a Dialog Bot ❘ 105

With the Forward from the previous code snippet, the SupportDialog from the next code snippet is
immediately started. Because of the Forward, the Wait method in StartAsync does not wait for a new
message; it immediately processes the message in the MessageReceivedAsync method. A ticket number
is generated, and a message is returned to the user by calling the PostAsync method. Invoking the Done
method closes the current dialog and returns to the parent dialog (code fi le DialogBotSample/Dialogs/
SupportDialog.cs):

[Serializable]
public class SupportDialog : IDialog<int>
{
 public Task StartAsync(IDialogContext context)
 {
 context.Wait(MessageReceivedAsync);
 return Task.CompletedTask;
 }

 public virtual async Task MessageReceivedAsync(IDialogContext context,
 IAwaitable<IMessageActivity> result)
 {
 var message = await result;

 var ticketNumber = new Random().Next(0, 10000);

 await context.PostAsync($"Your message '{message.Text}' was registered. " +
 "Once we resolve it; we will get back to you.");

 context.Done(ticketNumber);
 }
}

What are the options you have with the IDialogContext to step in the stack of the conversion? Until
now you’ve seen the Wait and Forward methods to change the dialog stack, and the PostAsync method
to communicate with the user. The IDialogContext interface derives from the interfaces IDialogStack,
IBotContext, IBotData, and IBotToUser. The following table lists what you can do with the context.

 INTERFACE MEMBER DESCRIPTION

IDialogStack Call Calls a child dialog and adds it to the top of the
stack

Done The current dialog is completed. Passes the result
to the parent dialog.

Fail The current dialog is on error. Returns an
exception to the parent dialog.

Forward Calls a child dialog and forward the message to
the child dialog.

Post Posts an event to the queue.

Reset Resets the stack.

Wait Suspends the current dialog and wait for a
message to arrive.

IBotContext Activity Accesses the activity associated with the
conversation.

continues

106 ❘ BONUS CHAPTER 4 BOTS AND COGNITIVE SERVICES

 INTERFACE MEMBER DESCRIPTION

IBotData UserData

ConversationData

PrivateConversationData

FlushAsync

LoadAsync

Reads and writes data in the IBotDataStore and
accesses bot data associated with the user and
associated with the conversation.

IBotToUser MakeMessage Creates an IMessageActivity message that can
be sent to the user.

PostAsync Sends a message to the user.

In the parent dialog, the RootDialog, the method ResumeAfterSupportDialog is now invoked. A
ResumeAfter delegate to this method was passed when forwarding the request to the SupportDialog
with the Forward method. Here, the result from the SupportDialog is retrieved (the ticket number), and
a message is posted to the user. The next Wait waits for the next message from the user, and invokes the
MessageReceivedAsync method as soon as the message arrives (code fi le DialogBotSample/Dialogs/
RootDialog.cs):

private async Task ResumeAfterSupportDialog(IDialogContext context, IAwaitable<int> result)
{
 var ticket = await result;
 await context.PostAsync(
 $"Thanks for contacting support. Your ticket number is {ticket}");
context.Wait(MessageReceivedAsync);

}

When you run the app and the Bot Framework Emulator, you can enter text like “I need help with this bot,”
which forwards the request to the SupportDialog as shown in Figure BC4-3.

FIGURE BC4-3

(continued)

Creating a Dialog Bot ❘ 107

Using the PromptDialog
The ShowOptions method that is invoked when the user doesn’t ask for help displays another dialog; it
prompts the user for a choice on one of the two options previously defi ned with the help of PromptDialog
.Choice. The second parameter of the Choice method defi nes the method that should be invoked when
the user made a choice (OnOptionSelected). The third parameter defi nes the different options, the fourth
parameter defi nes introduction text, the fi fth parameter defi nes the text when the user selects an invalid
option, and the last parameter defi nes the number of retries the user can do in cases when the information is
invalid (code fi le DialogBotSample/Dialogs/RootDialog.cs):

private void ShowOptions(IDialogContext context)
{
 PromptDialog.Choice(context, OnOptionSelected,
 new List<string>() { OrderLunchOption, ReserveTableOption },
 "Are you looking to order a lunch or reserve a seat?",
 "Not a valid option", 3);
}

The user is given the choice to order lunch or reserve a table, as shown in Figure BC4-4. With this option,
the user does not need to specify the answer exactly as written in the options; the user can, for example,
type “order” or “lunch,” or the user can type “1” or “fi rst”; each of these cases will result in lunch being
ordered.

FIGURE BC4-4

When the user selects an option, the OnOptionSelected method is invoked. Depending on the selection,
the OrderLunchDialog or the ReserveTableDialog dialogs are used for the ongoing communication.
In case the user made too many wrong attempts, the TooManyAttemptsException is thrown (code fi le
DialogBotSample/Dialogs/RootDialog.cs):

private async Task OnOptionSelected(IDialogContext context,
 IAwaitable<string> result)
{
 try
 {
 string optionSelected = await result;

 switch (optionSelected)
 {
 case OrderLunchOption:
 context.Call(new OrderLunchDialog(), ResumeAfterOptionDialog);
 break;

108 ❘ BONUS CHAPTER 4 BOTS AND COGNITIVE SERVICES

 case ReserveTableOption:
 context.Call(new ReserveTableDialog(), ResumeAfterOptionDialog);
 break;
 }
 }
 catch (TooManyAttemptsException ex)
 {
 await context.PostAsync("Ooops! Too many attemps :(. " +
 "But don't worry, I'm handling that exception and you can try again!");

 context.Wait(MessageReceivedAsync);
 }
}

The PromptDialog class offers different simple ways to ask questions of the user. You’ve seen the choice of
different options, but there are others, as shown in the following table.

 PROMPTDIALOG METHOD DESCRIPTION

Choice Prompts the user for one of a list of choices

Confirm Asks a yes/no question

Number Asks for a number of type long or type double

Text Asks for a string

You can also create iterations with these dialogs. The FindNumberDialog creates a random number
between 1 and 50 and asks for the correct number a maximum of six times. With the StartAsync method
of the FindNumberDialog, the fi rst PromptDialog.Number is started to ask the user for a number. As the
number is entered, the method ProcessNumber is invoked where the number is checked for correctness, and
PromptDialog.Number is invoked again where ProcessNumber is invoked recursively until the number is
correctly guessed or the maximum number of iterations is reached (code fi le DialogBotSample/Dialogs/
FindNumberDialog.cs):

[Serializable]
public class FindNumberDialog : IDialog<int>
{
 private int _theNumber;
 private bool _success = false;
 private int _loop = 0;

 public async Task StartAsync(IDialogContext context)
 {
 _theNumber = new Random().Next(1, 50);
 await context.PostAsync(
 "Find a number between 1 and 50 with a max of 6 attempts");
 PromptDialog.Number(
 context,
 new ResumeAfter<long>(ProcessNumber),
 "enter a number between 1 and 50");
 }

 private async Task ProcessNumber(IDialogContext context,
 IAwaitable<long> result)
 {
 var number = await result;
 _loop++;
 if (number == _theNumber)
 {
 _success = true;
 }

Creating a Dialog Bot ❘ 109

 else if (number < _theNumber)
 {
 await context.PostAsync("too small, try again");
 }
 else
 {
 await context.PostAsync("too big, try again");
 }
 if (!_success && _loop < 6)
 {
 PromptDialog.Number(
 context,
 ProcessNumber,
 "enter a number between 1 and 50");
 }
 else
 {
 string message;
 if (_success)
 {
 message = $"Success - you made it! The correct number is {_theNumber}";
 }
 else
 {
 message = $"Better luck next time. The correct number is {_theNumber}";
 }
 await context.PostAsync(message);
 context.Done(_theNumber);
 }
 }
}

Figure BC4-5 shows a run of the application to guess the correct number.

FIGURE BC4-5

110 ❘ BONUS CHAPTER 4 BOTS AND COGNITIVE SERVICES

USING FORM FLOW FOR DIALOGS
Often you need to collect some information from a user. By using Form Flow (namespace Microsoft.Bot
.Builder.FormFlow), you can defi ne a class with properties where you defi ne what information is needed
by the user. With the ReserveTableDialog, the ReserveTableQuery is used. The ReserveTableQuery
class defi nes the properties Date, Time, and People—values needed from the user to reserve a table. By add-
ing annotations to these properties, you can defi ne what to ask the user, and what information is needed.
The Prompt attribute defi nes the text that is sent to the user. With the Numeric attribute, you defi ne a num-
ber range that can be entered by the user (code fi le DialogBotSample/Dialogs/ReserveTableQuery.cs):

[Serializable]
public class ReserveTableQuery
{
 [Prompt("Please enter the {&} for the reservation")]
 public DateTime? Date { get; set; }

 [Prompt("Please enter the {&}")]
 public DateTime? Time { get; set; }

 [Numeric(1, 50)]
 [Prompt("For how many {&} should be reserved?")]
 public int? People { get; set; }
}

NOTE The {&} placeholder defi ned with the Prompt attribute is part of the pattern
language from the Bot Framework. The curly braces identify elements that will be
replaced at runtime. Using & shows the description of the current fi eld (or property in
the sample code), which is by default the name.

The ReserveTableDialog is implemented like the other dialogs shown earlier that implement the interface
IDialog. The StartAsync method fi rst posts a welcome message. Next, the FormDialog is created using
the FormDialog.FromForm method. This method needs a fi rst parameter of type BuildFormDelegate<T>,
which requires a method returning IForm<T> (which is IForm<ReserveTableQuery> in the sample code).
After the form dialog is created, the reserveTableQuery form dialog is called as child dialog, and it’s put
on top of the stack by invoking the Call method on the context (code fi le DialogBotSample/Dialogs/
ReserveTableDialog.cs):

[Serializable]
public class ReserveTableDialog : IDialog<object>
{
 public async Task StartAsync(IDialogContext context)
 {
 await context.PostAsync("Welcome to reserving a table!");

 var reserveTableQuery = FormDialog.FromForm(BuildReserveTableForm,
 FormOptions.PromptFieldsWithValues);

 context.Call(reserveTableQuery, ResumeAfterReserveTableFormDialog);
 }
 //...
}

The BuildReserveTableForm method that is passed to the FormDialog.FromForm method to create a form
makes use of the FormBuilder. The FormBuilder class defi nes methods to create the form using a fl uent
API. First, the property Date of the ReserveTableQuery class needs to be fi lled by invoking the Field

Using Form Flow for Dialogs ❘ 111

method that passes the name of this property. The Confirm method confi rms the user input by asking the
user if the date is correct. Next, all the remaining properties of the class ReserveTableQuery are asked—
using the FormBuilder method AddRemainingFields. On completion of the user input, the lambda expres-
sion assigned to the fi eld reservationAnswer is invoked to confi rm the reservation using the PostAsync
method on the context. After defi ning the form, the form is built by invoking the Build method (code fi le
DialogBotSample/Dialogs/ReserveTableDialog.cs):

public IForm<ReserveTableQuery> BuildReserveTableForm()
{
 OnCompletionAsyncDelegate<ReserveTableQuery> reservationAnswer =
 async (context, reservation) =>
 await context.PostAsync($"Thanks. Reserving {reservation.People} " +
 $"seats on {reservation.Date:D} at {reservation.Time:t}");

 return new FormBuilder<ReserveTableQuery>()
 .Field(nameof(ReserveTableQuery.Date))
 .Confirm("Looking to reserve a seat at {Date:d}?")
 .AddRemainingFields()
 .OnCompletion(reservationAnswer)
 .Build();
 }

Figure BC4-6 shows a run of the application to reserve a table. The user has different options to enter the
date and time—for example, to reserve the table at 2:00 p.m., the user can also specify a time of 14:00.

FIGURE BC4-6

112 ❘ BONUS CHAPTER 4 BOTS AND COGNITIVE SERVICES

CREATING A HERO CARD
Instead of just communicating via messages, the bot can show cards. Cards started with Facebook as ads in
the timeline and web apps. Nowadays, many different cards are used to approve reservations, show weather
information, provide reminders, show information on airline updates, receipts, and much more.

The Bot Framework SDK supports these cards as shown in the following table.

CARD DESCRIPTION

Animation Card Plays an animated GIF or a short video

Audio Card Plays an audio fi le

Hero Card A card with a large image, text, and buttons

Thumbnail Card A card with a single thumbnail image, text, and buttons

Receipt Card A card to provide a receipt to a user

SignIn Card A card with controls to initiate the sign-in process

Video Card Plays videos

After the user successfully enters the reservation, it’s a good idea to show a hero card. The address of
the method ResumeAfterReserveTableFormDialog is passed to the context.Call method with the
ResumeAfter delegate, thus this method is invoked when the reservation is completed.

NOTE With the reservation of the table, a real app should do more than return a mes-
sage via the bot; it also should invoke the Web API from the restaurant to submit the
registration information. Because there’s nothing special about how this is done from
bots, the sample app does not implement this functionality.

With the sample implementation, a hero card is created and shown to the user. The HeroCard class
is defi ned in the Microsoft.Bot.Connector namespace. Such a card can have a title, subtitle, text,
images, and buttons associated with it. With the sample code, the Title, Subtitle, and Images prop-
erties are fi lled. The HeroCard is added to the attachments of the resultMessage created using the
MakeMessage method. Finally, the message is sent using PostAsync (code fi le DialogBotSample/Dialogs/
ReserveTableDialog.cs):

public async Task ResumeAfterReserveTableFormDialog(IDialogContext context,
 IAwaitable<ReserveTableQuery> result)
{
 try
 {
 var reservation = await result;

 // TODO: call the reservation API of the restaurant
 var resultMessage = context.MakeMessage();

 var heroCard = new HeroCard
 {

Creating a Hero Card ❘ 113

 Title = "Reservation",
 Subtitle = $"for {reservation.People} at " +
 $"the date {reservation.Date:D} and time {reservation.Time:t}",
 Images = new List<CardImage>()
 {
 new CardImage
 {
 Url = "https://kantinem101.blob.core.windows.net/" +
 "menuimages/Hirschragout_250"
 }
 }
 };
 resultMessage.Attachments.Add(heroCard.ToAttachment());

 await context.PostAsync(resultMessage);
 }
 catch (FormCanceledException ex)
 {
 string reply = "You canceled the operation. " +
 "Quitting from the reservation.";
 await context.PostAsync(reply);
 }
 finally
 {
 context.Done<object>(null);
 }
}

The conversation from the table reservation is now completed, and the hero card is shown as in
Figure BC4-7.

FIGURE BC4-7

114 ❘ BONUS CHAPTER 4 BOTS AND COGNITIVE SERVICES

NOTE Cards can be used with many different technologies and websites; you can
use cards on Twitter, Skype, Windows toasts, and more. However, every website
showing cards makes use of a different technology. The new technology Adaptive
Cards should solve this. You can write cards with JSON and use them with differ-
ent renderers in your bot, Skype, Teams, and Kik, as well as with WPF, Windows
apps, and Xamarin apps. Adaptive Cards is currently available in preview; check out
https://adaptivecards.io for samples, the schema explorer, and visualizers to see
how the cards are adapted for different looks based on where they are used.

BOTS AND LUIS
Bots can easily make use of Microsoft Azure Cognitive Services. Cognitive Services offer intelligent
algorithms using artifi cial intelligence (AI) to understand text users enter and speech. You can use it to
analyze images and videos for its contents, fi nd recommendations, and use semantic search. Of course,
Cognitive Services can also be used from other kind of apps aside from bots.

Language Understanding Intelligence Services (LUIS) is a service that understands what the user wants. The
samples in the previous sections checked for specifi c terms to be part of the query—for example, “help” or
“support.” Using LUIS, the bot’s understanding of the user is a lot more sophisticated.

The LUISBotSample is based on the Language Understanding template from the Microsoft Azure Web
App Bot templates. Here, a dialog is used that derives from the base class LuisDialog. A LuisDialog
contains methods with IDialogContext and LuisResult parameters that have a LuisIntent annotated.
An intent specifi es what needs to be achieved. Predefi ned intents that are automatically created from the
Azure template are Greeting, Cancel, and Help. The intents are clear with these terms. You can remove
the predefi ned intents and add custom ones. An intent to create a reservation for a restaurant could be
named Restaurant.Reservation. This intent needs to be added to the LUIS service.

With the dialog, depending on the message received, if it matches an intent, the corresponding method
is invoked. The template-generated code invokes the same method with all intent-annotated methods:
ShowLuisResult. This method is invoked to show information about the intent. The sample code is a little
simplifi ed from the generated code to just defi ne one method and to apply multiple LuisIntent attributes to
this method (code fi le LuisBotSample/Dialogs/BasicLuisDialog.cs):

[Serializable]
public class BasicLuisDialog : LuisDialog<object>
{
 public BasicLuisDialog() : base(new LuisService(new LuisModelAttribute(
 ConfigurationManager.AppSettings["LuisAppId"],
 ConfigurationManager.AppSettings["LuisAPIKey"])))
 {
 }

 [LuisIntent("Greeting")]
 [LuisIntent("None")]
 [LuisIntent("Help")]
 [LuisIntent("Cancel")]
 public async Task SeveralIntents(IDialogContext context, LuisResult result)
 {
 await this.ShowLuisResult(context, result);

Bots and LUIS ❘ 115

 }

 private async Task ShowLuisResult(IDialogContext context, LuisResult result)
 {
 await context.PostAsync($"You have reached {result.Intents[0].Intent}. " +
 $"You said: {result.Query}");
 context.Wait(MessageReceived);
 }
}

When you run the Bot Framework Emulator, you can talk to the bot and see to which intent the message
maps, as shown in Figure BC4-8.

FIGURE BC4-8

Defi ning Intents and Utterances
For using LUIS, you need to register your app with https://luis.ai. When you create the bot from
Microsoft Azure using the Language Understanding template, the registration happens automatically.
Intents for Greeting, Cancel, and Help are created automatically.

An intent is defi ned by multiple utterances like shown in Figure BC4-9. The user can say, “Hi bot,” “Hiya,”
“How are you doing today?” “Good night,” “Hello bot,” and “How are you doing?” which all means the
same intent—Greeting.

116 ❘ BONUS CHAPTER 4 BOTS AND COGNITIVE SERVICES

FIGURE BC4-9

You can also specify entities for your utterances to easily get some information about what the user says. For
example, if a user says, “I want to reserve a table for 5 people on Saturday at 6,” you can get the number of
people, the date from Saturday, and the time from 6. On the LUIS website you can specify prebuilt entities
such as number, email, url, money, phonenumber, prebuilt domain entities such as Calendar.Subject,
Events.Address, Music.ArtistName, Note.Text, Places.Cuisine, Taxi.Address, and many more.

With the LUIS website, you can create the intent RestaurantReservation, and add phrases such as

➤ Please reserve a seat on February 14.
➤ I want a table for 5 people on Wednesday at 6 p.m.
➤ Can I reserve a table for 10 on Sunday at 19:00?
➤ I would like to reserve a table.
➤ Can I reserve a table?

With these phrases, words within the phrase can be clicked to map it to an entity. With the intent
RestaurantReservation, the entities from the following list are defi ned:

➤ Reservation.Weekday

➤ Reservation.Time

➤ Reservation.Day

➤ Reservation.Number

➤ Reservation

Bots and LUIS ❘ 117

The entities Reservation.Weekday, Reservation.Time, and so on are simple entities, whereas
the Reservation entity is a composite entity that combines the other entities for the reservation
(see Figure BC4-10).

FIGURE BC4-10

With the intent RestaurantReservation, several phrases are defi ned that map to entities (see
Figure BC4-11).

After the intents and entities are defi ned, LUIS can be trained; you just click the Train button. Before the
intents are active, you also need to publish the LUIS app which can be done from the LUIS website. You can
copy the application ID and the key needed for the bot from the LUIS website as well.

All the information needed for the RestaurantReservation intent is collected with the
RestaurantReservation class. This class allows the Day, the Time, and the Number (number of people
for the reservation) to be entered. Instead of the Day, Weekday can be set; this way, the next weekday is
assumed. This class also defi nes attributes to use it from a dialog asking the user for the needed information.
Also, the entities defi ned in the LUIS website have constants defi ned in this class to make it easily accessible.
(code fi le LuisBotSample/Dialogs/RestaurantReservation.cs):

[Serializable]
public sealed class RestaurantReservation
{
 public DayOfWeek Weekday

118 ❘ BONUS CHAPTER 4 BOTS AND COGNITIVE SERVICES

 {
 get => Day?.DayOfWeek ?? DayOfWeek.Sunday;
 set => Day = DateTime.Today.AddDays(value.DaysUntilNext());
 }

 [Prompt("Please enter the {&} for the reservation")]
 public DateTime? Day { get; set; }

 [Prompt("Please enter the {&}")]
 public DateTime? Time { get; set; }

 [Numeric(1, 50)]
 [Prompt("For how many people should be reserved?")]
 public int? Number { get; set; }

 public override string ToString() =>
 $"Reservation for {Number} people on {Day:d} at {Time:t}";

 public const string Reservation_Day = "Reservation.Day";
 public const string Reservation_Number = "Reservation.Number";
 public const string Reservation_Time = "Reservation.Time";
 public const string Reservation_Weekday = "Reservation.Weekday";
}

FIGURE BC4-11

Bots and LUIS ❘ 119

Accessing Recommendations from LUIS
When receiving an intent from LUIS, you can use the LuisResult to read how likely it’s really the intent.
The LuisResult contains a property called Intents that contains a list of IntentRecommendation
objects. The IndentRecommendation contains a Score property of type double that gives the infor-
mation how likely it’s the intent. If multiple intents match, you can see all these intents with different
scores. Part of the LuisResult are also entities and composite entities accessible from the Entities and
CompositeEntities properties.

With the LuisResult, you can use the extension method TryFindEntity to check whether an entity is
contained in the result. Here, the constants defi ned with the RestaurantReservation class are used
to check for the entities. If the entity is found, a conversion to the needed type is tried. After the values
for the entities are retrieved, a new FormDialog is created to ask the user for the missing data (code fi le
LuisBotSample/Dialogs/BasicLuisDialog.cs):

[LuisIntent("RestaurantReservation")]
public async Task RestaurantReservationIntent(IDialogContext context,
 IAwaitable<IMessageActivity> activity, LuisResult result)
{
 var message = await activity;
 await context.PostAsync($"Welcome to the reservation system! " +
 $"Analyzing your message '{message.Text}'...");

 var reservation = new RestaurantReservation();
 if (result.TryFindEntity(RestaurantReservation.Reservation_Weekday,
 out EntityRecommendation weekdayRecommendation))
 {
 if (Enum.TryParse(weekdayRecommendation.Entity, true,
 out DayOfWeek weekday))
 {
 reservation.Weekday = weekday;
 }
 }

 if (result.TryFindEntity(RestaurantReservation.Reservation_Day,
 out EntityRecommendation dayRecommendation))
 {
 if (DateTime.TryParse(dayRecommendation.Entity, out DateTime day))
 {
 reservation.Day = day;
 }
 }

 if (result.TryFindEntity(RestaurantReservation.Reservation_Time,
 out EntityRecommendation timeRecommendation))
 {
 if (DateTime.TryParse(timeRecommendation.Entity, out DateTime time))
 {
 reservation.Time = time;
 }
 }

 if (result.TryFindEntity(RestaurantReservation.Reservation_Number,
 out EntityRecommendation numberRedommendation))
 {

120 ❘ BONUS CHAPTER 4 BOTS AND COGNITIVE SERVICES

 if (int.TryParse(numberRedommendation.Entity, out int number))
 {
 reservation.Number = number;
 }
 }

 var reservationForm = new FormDialog<RestaurantReservation>(
 reservation,
 BuildRestaurantReservationForm,
 FormOptions.PromptInStart, result.Entities);
 context.Call(reservationForm, ResumeAfterRestaurantReservation);
}

public async Task ResumeAfterRestaurantReservation(IDialogContext context,
 IAwaitable<RestaurantReservation> result)
{
 await context.PostAsync("See you soon!!!");
}

Using a Form Flow with Active Checks
Next, a Form Flow is created that asks for all values that couldn’t be retrieved from the received
LuisResult. Using the FormBuilder, all the properties of the needed RestaurantReservation type
are asked if they are active. They are active and included in the fl ow only if the value of the properties is
currently null. The comparison with null is done in the lambda expression that is passed to the second
parameter of the Field method. With an optional third parameter, you can also implement a validation
method to check whether the user entered a valid value. After completion of all inputs, a fi nal reservation
message is posted (code fi le LuisBotSample/Dialogs/BasicLuisDialog.cs):

private IForm<RestaurantReservation> BuildRestaurantReservationForm() =>
 new FormBuilder<RestaurantReservation>()
 .Field(nameof(RestaurantReservation.Day), state => state.Day == null)
 .Field(nameof(RestaurantReservation.Time), state => state.Time == null)
 .Field(nameof(RestaurantReservation.Number), state => state.Number == null)
 .OnCompletion(OnCompleteRestaurantReservation)
 .Build();

public async Task OnCompleteRestaurantReservation(IDialogContext context,
 RestaurantReservation reservation)
{
 await context.PostAsync(
 $"Thanks for the reservation on {reservation.Day:d} "+
 $"at {reservation.Time:t} for {reservation.Number} people");
}

When you run the Bot Emulator, you can ask for a reservation like “I would like to reserve a table on
Sunday for 5 people.” Using the weekday, the next Sunday is calculated, and the value 5 defi nes the number
of seats needed. Now an additional question for the time is asked (see Figure BC4-12). Finally, the complete
reservation information is posted.

Summary ❘ 121

FIGURE BC4-12

SUMMARY
This introduced you to bots using the Microsoft Bot Framework and Microsoft Azure. You’ve seen how
to create a dialog to keep the communication going with the user to receive all the information needed
to do some tasks. You’ve seen how to create simple dialogs and how to use predefi ned dialogs with the
PromptDialog class. You were also introduced to how Form Flow automatically fi lls all the properties
needed for a model class with the help of the FormDialog and the FormBuilder classes.

To make it even more comfortable for the user, you can use cognitive services such as LUIS to understand
the user’s intent.

