
WHAT’S IN THIS CHAPTER?

➤ Using the camera
➤ Accessing geolocation information
➤ Using the MapControl
➤ Using sensors

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The Wrox.com code downloads for this chapter are found at http://www.wrox.com
on the Download Code tab. The source code is also available at https://github.com/
ProfessionalCSharp/ProfessionalCSharp7 in the directory MoreWindows.

The code for this chapter is divided into these major samples:

➤ Camera Sample
➤ Map Sample
➤ Sensor Sample
➤ Rolling Marble

OVERVIEW
This chapter gives you information about programming Windows apps using built-in hardware from
your devices and special controls.

You access the camera of your Windows 10 device with the CameraCaptureUI control. This control
can be used to not only take photos but also to record videos.

To access location information, the GPS sensor (if it is available) is used from GeoLocator. If the GPS
sensor is not available, location information is accessed with the help of the Wi-Fi network or the IP
address. The geocoordinates you receive from the location information can be used with MapControl.
This control that is part of the Windows Runtime offers several views. You can display streets or an
aerial view. With some locations, a street-level experience is available, which enables users to “walk
through” the streets using nice 3D images.

Bonus Chapter 5

124 ❘ BONUS CHAPTER 5 MORE WINDOWS APPS FEATURES

This bonus chapter concludes with information about accessing sensors that are available with many
Windows 10 devices. The LightSensor returns information about available light. The Compass uses a mag-
netometer to measure the magnetic and the geographic north. With the Accelerometer you can measure
g-forces. These are just a few samples of the many sensors demonstrated in this chapter.

With the rolling marble sample app, the Accelerometer will be used to move an Ellipse across the screen.
The Microsoft Surface devices include many of the sensors used. Notebooks and tablets from other vendors
offer them as well. You need to try this out with your devices.

CAMERA
As apps are becoming more and more visual, and more devices offer one or two cameras built-in, using
the camera is becoming a more and more important aspect of apps—and it is easy to do with the Windows
Runtime.

NOTE Using the camera requires that you confi gure the Webcam capability in the
Manifest Editor. For recording videos, you need to confi gure the Microphone
capability as well.

Photos and videos can be captured with the CameraCaptureUI class (in the namespace Windows.Media
.Capture). First, you need to confi gure the photo and video settings to use the CaptureFileAsync
method. The fi rst code snippet captures a photo. After instantiating the CameraCaptureUI class,
PhotoSettings are applied. Possible photo formats are JPG, JPGXR, and PNG. It is also possible to
defi ne cropping where the UI for the camera capture directly asks the user to select a clipping from the
complete picture based on the cropping size. For cropping, you can defi ne either a pixel size with the prop-
erty CroppedSizeInPixels or just a ratio with CroppedAspectRatio. After the user takes the photo, the
sample code uses the returned StorageFile from the method CaptureFileAsync to store it as a fi le inside
a user-selected folder with the help of the FolderPicker (code fi le CameraSample/MainPage.xaml.cs)

private async void OnTakePhoto(object sender, RoutedEventArgs e)
{
 var cam = new CameraCaptureUI();
 cam.PhotoSettings.AllowCropping = true;
 cam.PhotoSettings.Format = CameraCaptureUIPhotoFormat.Png;
 cam.PhotoSettings.CroppedSizeInPixels = new Size(300, 300);

 StorageFile file = await cam.CaptureFileAsync(CameraCaptureUIMode.Photo);
 if (file != null)
 {
 var picker = new FileSavePicker();
 picker.SuggestedStartLocation = PickerLocationId.PicturesLibrary;
 picker.FileTypeChoices.Add("Image File", new string[] { ".png" });
 StorageFile fileDestination = await picker.PickSaveFileAsync();
 if (fileDestination != null)
 {
 await file.CopyAndReplaceAsync(fileDestination);
 }
 }
}

Camera ❘ 125

The second code snippet is used to record a video. As before, you fi rst need to take care of the confi gura-
tion. Besides the PhotoSettings property, the CameraCaptureUI type defi nes the VideoSettings prop-
erty. You can restrict the video recording based on the maximum resolution (using the enumeration value
CameraCaptureUIMaxVideoResolution.HighestAvailable allows the user to select any available reso-
lution) and the maximum duration. Possible video formats are WMV and MP4 (code fi le CameraSample/
MainPage.xaml.cs)

private async void OnRecordVideo(object sender, RoutedEventArgs e)
{
 var cam = new CameraCaptureUI();
 cam.VideoSettings.AllowTrimming = true;
 cam.VideoSettings.MaxResolution =
 CameraCaptureUIMaxVideoResolution.StandardDefinition;
 cam.VideoSettings.Format = CameraCaptureUIVideoFormat.Wmv;
 cam.VideoSettings.MaxDurationInSeconds = 5;

 StorageFile file = await cam.CaptureFileAsync(
 CameraCaptureUIMode.Video);
 if (file != null)
 {
 var picker = new FileSavePicker();
 picker.SuggestedStartLocation = PickerLocationId.VideosLibrary;
 picker.FileTypeChoices.Add("Video File", new string[] { ".wmv" });
 StorageFile fileDestination = await picker.PickSaveFileAsync();
 if (fileDestination != null)
 {
 await file.CopyAndReplaceAsync(fileDestination);
 }
 }
}

In cases where the user should be offered the option to capture either a video or a photo, you can pass the
parameter CameraCaptureUIMode.PhotoOrVideo to the method CaptureFileAsync.

Because the camera also records location information, when the user runs the app for the fi rst time, he or
she is asked if recording location information should be allowed (see Figure BC5-1).

Running the application, you can record photos and videos.

FIGURE BC5-1

126 ❘ BONUS CHAPTER 5 MORE WINDOWS APPS FEATURES

GEOLOCATION AND MAPCONTROL
Knowing the location of the user is an important aspect of apps, whether it’s an app to show a map, an app
that shows the weather of the area of the user, or an app for which you need to decide in what nearest cloud
center the data of the user should be saved. When ads are used in the app, the user location can be impor-
tant to show ads from the near area (if available).

With Windows apps you can also show maps. With Windows 10, a MapControl is available as part of the
Windows API, and you don’t need to use additional libraries for doing this.

The sample app uses both the Geolocator (namespace Windows.Devices.Geolocation), to give informa-
tion about the address of the user, and the MapControl (namespace Windows.UI.Xaml.Controls.Maps).
Of course, you can also use these types independent of each other in your apps.

Using the MapControl
With the sample app, a MapControl is defi ned in the MainPage where different properties and events bind to
values from the MapsViewModel that is accessed via the ViewModel property of the page. This way, you can
dynamically change some settings in the app and see different features available with the MapControl (code
fi le MapSample/MainPage.xaml):

<maps:MapControl x:Name="map"
 Center="{x:Bind ViewModel.CurrentPosition, Mode=OneWay}"
 MapTapped="{x:Bind ViewModel.OnMapTapped, Mode=OneTime}"
 Style="{x:Bind ViewModel.CurrentMapStyle, Mode=OneWay}"
 ZoomLevel="{x:Bind Path=ViewModel.ZoomLevel, Mode=OneWay}"
 DesiredPitch="{x:Bind Path=ViewModel.DesiredPitch, Mode=OneWay}"
 TrafficFlowVisible="{x:Bind checkTrafficFlow.IsChecked, Mode=OneWay,
 Converter={StaticResource nbtob}}"
 BusinessLandmarksVisible="{x:Bind checkBusinessLandmarks.IsChecked,
 Mode=OneWay, Converter={StaticResource nbtob}}"
 LandmarksVisible="{x:Bind checkLandmarks.IsChecked, Mode=OneWay,
 Converter={StaticResource nbtob}}"
 PedestrianFeaturesVisible="{x:Bind checkPedestrianFeatures.IsChecked,
 Mode=OneWay, Converter={StaticResource nbtob}}" />

The sample app defi nes controls to confi gure the MapControl within the Pane of the SplitView that is
positioned on the right side. The MapControl is defi ned within the content of the SplitView.

With the code-behind fi le, the ViewModel property is defi ned, and a MapsViewModel is instantiated by pass-
ing the MapControl to the constructor. Usually it’s best to avoid having Windows controls directly acces-
sible to the view model, and you should only use data binding to map. However, when you use some special
features, such as street-side experience, it’s easier to directly use the MapControl in the MapsViewModel
class. Because this view model type is not doing anything else and cannot be used on anything other
than Windows devices anyway, it’s a compromise for passing the MapControl to the constructor of the
MapsViewModel (code fi le MapSample/MainPage.xaml.cs):

public sealed partial class MainPage: Page
{
 public MainPage()
 {
 this.InitializeComponent();
 ViewModel = new MapsViewModel(map);
 }
 public MapsViewModel ViewModel { get; }
}

Geolocation and MapControl ❘ 127

The constructor of the MapsViewModel initializes some properties that are bound to properties of the
MapControl, such as the position of the map to a location within Vienna, the map style to a road variant,
the pitch level to 0, and the zoom level to 12 (code fi le MapSample/ViewModels/MapsViewModel.cs):

public class MapsViewModel: BindableBase
{
 private readonly CoreDispatcher _dispatcher;
 private readonly Geolocator _locator = new Geolocator();
 private readonly MapControl _mapControl;

 public MapsViewModel(MapControl mapControl)
 {
 _mapControl = mapControl;
 StopStreetViewCommand = new DelegateCommand(
 StopStreetView, () => IsStreetView);
 StartStreetViewCommand = new DelegateCommand(
 StartStreetViewAsync, () => !IsStreetView);

 if (!DesignMode.DesignModeEnabled)
 {
 _dispatcher = CoreWindow.GetForCurrentThread().Dispatcher;
 }

 _locator.StatusChanged += async (s, e) =>
 {
 await _dispatcher.RunAsync(CoreDispatcherPriority.Low, () =>
 PositionStatus = e.Status);
 };

 // intialize defaults at startup
 CurrentPosition = new Geopoint(
 new BasicGeoposition { Latitude = 48.2, Longitude = 16.3 });
 CurrentMapStyle = MapStyle.Road;
 DesiredPitch = 0;
 ZoomLevel = 12;
 }

Upon starting the app with the initial confi guration, you can see the maps loaded with a location in Vienna
as defi ned by the BasicGeoposition, the controls on the right side for managing the MapControl, and tex-
tual information about the loading status of the map (see Figure BC5-2).

When you zoom in, change the pitch level, and select landmarks and business landmarks to be visible, you
can see famous buildings such as the Stephansdom in Vienna, as shown in Figure BC5-3.

When you switch to the Aerial view, you can see real images, as shown in Figure BC5-4.

Some locations also show nice images with the Aerial3D view, as shown in Figure BC5-5.

Location Information with Geolocator
Next, you need to get the actual position of the user with the help of the Geolocator instance _locator.
The method GetPositionAsync returns the geolocation by returning a Geoposition instance. The result is
applied to the CurrentPosition property of the view model that is bound to the center of the MapControl
(code fi le MapSample/ViewModels/MapsViewModel.cs):

public async void GetCurrentPositionAsync()
{
 try
 {

128 ❘ BONUS CHAPTER 5 MORE WINDOWS APPS FEATURES

Geoposition position = await _locator.GetGeopositionAsync(
 TimeSpan.FromMinutes(5), TimeSpan.FromSeconds(5));
 CurrentPosition = new Geopoint(new BasicGeoposition
 {
 Longitude = position.Coordinate.Point.Position.Longitude,
 Latitude = position.Coordinate.Point.Position.Latitude
 });
 }
 catch (UnauthorizedAccessException ex)
 {
 await new MessageDialog(ex.Message).ShowAsync();
 }
}

FIGURE BC5-2

Geolocation and MapControl ❘ 129

FIGURE BC5-3

The Geoposition instance returned from GetGeopositionAsync lists information about how the
Geolocator determined the position: using a cellular network with a phone, satellite, a Wi-Fi network
that is recorded, or an IP address. When you confi gure the Geolocator, you can specify how accurate the
information should be. By setting the property DesiredAccuracyInMeters, you can defi ne how exact the
location should be within a meter range. Of course, this accuracy is what you hope for, but it might not be
possible to achieve. If the location should be more exact, GPS information from accessing satellite informa-
tion can be used. Depending on the technology needed, more battery is used, so you shouldn’t specify such
accuracy if it isn’t necessary. Satellite or cellular information cannot be used if the device doesn’t offer these
features. In those cases, you can use only the Wi-Fi network (if available) or an IP address. Of course, the IP
address can be imprecise. Maybe you’re getting the geolocation of an IP provider instead of the user. With
the device and network I’m using, I get an accuracy of 55 meters. The source of the position is Wi-Fi. The
result is very accurate. You can see the map in Figure BC5-6.

130 ❘ BONUS CHAPTER 5 MORE WINDOWS APPS FEATURES

FIGURE BC5-4

Street-Side Experience
Another feature offered by the MapControl is street-side experience. This feature is not available with all
devices. You need to check the IsStreetsideSupported property from the MapControl before using it.
In cases where street view is supported by the device, you can try to fi nd nearby street-side places using the
static method FindNearbyAsync of the StreetsidePanorama class. Street-side experience is available only
for some locations. You can test to fi nd out whether it is available in your location. If StreetsidePanorama
information is available, it can be passed to the StreetsideExperience constructor and assigned to the
CustomExperience property of the MapControl (code fi le MapSample/ViewModels/MapsViewModel.cs):

public async void StartStreetViewAsync()
{
 if (_mapControl.IsStreetsideSupported)
 {
 var panorama = await StreetsidePanorama.FindNearbyAsync(CurrentPosition);

Geolocation and MapControl ❘ 131

 if (panorama == null)
 {
 var dlg = new MessageDialog("No streetside available here");
 await dlg.ShowAsync();
 return;
 }
 IsStreetView = true;

_mapControl.CustomExperience = new StreetsideExperience(panorama);
 }
}

FIGURE BC5-5

Street-side experience looks like what’s shown in Figure BC5-7.

132 ❘ BONUS CHAPTER 5 MORE WINDOWS APPS FEATURES

FIGURE BC5-6

Continuously Requesting Location Information
Instead of getting the location just once using the Geolocator, you can also retrieve the location based
on a time interval or the movement of the user. With the Geolocator, you can set the ReportInterval
property to a minimum time interval in milliseconds between location updates. Updates can still happen
more often—for example, if another app requested geo information with a smaller time interval. Instead of
using a time interval, you can specify that the movement of the user fi re location information. The property
MovementThreshold specifi es the movement in meters.

After setting the time interval or movement threshold, the PositionChanged event is fi red every time a
position update occurs:

private void OnGetContinuousLocation(object sender, RoutedEventArgs e)
{
 locator = new Geolocator();
 locator.DesiredAccuracy = PositionAccuracy.High;
 // locator.ReportInterval = 1000;
 locator.MovementThreshold = 10;
 locator.PositionChanged += (sender1, e1) =>

Sensors ❘ 133

 {
 // position updated
 };
 locator.StatusChanged += (sender1, e1) =>
 {
 // status changed
 };
}

FIGURE BC5-7

NOTE Debugging apps with position changes does not require that you now get into a
car and debug your app while on the road. Instead, the simulator is a helpful tool.

SENSORS
For a wide range of sensors, the Windows Runtime offers direct access. The namespace Windows.Devices
.Sensors contains classes for several sensors that can be available with different devices.

134 ❘ BONUS CHAPTER 5 MORE WINDOWS APPS FEATURES

Before stepping into the code, it helps to have an overview of the different sensors and what they can be
used for with the following table. Some sensors are very clear with their functionality, but others need some
explanation.

SENSOR FEATURES

LightSensor The light sensor returns the light in lux. This information is used by Windows to
set the screen brightness.

Compass The compass gives information about how many degrees the device is directed
to the north using a magnetometer. This sensor differentiates magnetic and geo-
graphic north.

Accelerometer The accelerometer measures G-force values along x, y, and z device axes. This
could be used by an app that shows a marble rolling across the screen.

Gyrometer The gyrometer measures angular velocities along x, y, and z device axes. If the
app cares about device rotation, this is the sensor that can be used. However,
moving the device also infl uences the gyrometer values. It might be necessary to
compensate the gyrometer values using accelerometer values to remove moving
of the device and just work with the real angular velocities.

Inclinometer The inclinometer gives number of degrees as the device rotates across the x-axis
(pitch), y-axis (roll), and z-axis (yaw). An example of when this could be used is an
app showing an airplane that matches yaw, pitch, and roll.

OrientationSensor The orientation uses data from the accelerometer, gyrometer, and magnetometer
and offers the values both in a quaternion and a rotation matrix.

Barometer The barometer measures atmospheric pressure.

Altimeter The altimeter measures the relative altitude.

Magnetometer The magnetometer measures the strength and direction of a magnetic fi eld.

Pedometer The pedometer measures the steps taken. Usually you’re not walking with your
desktop PC, which doesn’t have such a sensor, maybe you walk with a mobile
device turned on. This is probably more likely than you’re using a Windows phone.

ProximitySensor The proximity sensor measures the distance of nearby objects. It uses an electro-
magnetic fi eld or infrared sensor to measure the distance.

Depending on your device, only a few of these sensors are available. Many of these sensors are used only
within mobile devices. For example, counting your steps with a desktop PC might not result in the number
of steps you should reach during a day.

An important aspect with sensors that return coordinates is that it’s not the display orientation coordinate
system that is used with Windows apps. Instead, it’s using device orientation, which can be different based
on the device. For example, for a Surface Pro that is by default positioned horizontally, the x-axis goes to
right, y-axis to top, and the z-axis away from the user.

The sample app for using the sensors shows the results of several sensors in two ways: You can get the sen-
sor value once, or you can read it continuously using events. You can use this app to see what sensor data is
available with your device and see what data is returned as you move the device.

Sensors ❘ 135

For each of the sensors shown in the app, a RelativePanel that contains two Button and two Textblock
controls is added to the MainPage. The following code snippet defi nes the controls for the light sensor (code
fi le SensorSample/MainPage.xaml):

<Border BorderThickness="3" Margin="12" BorderBrush="Blue">
 <RelativePanel>
 <Button x:Name="GetLightButton" Margin="8" Content="Get Light"
 Click="{x:Bind LightViewModel.OnGetLight}" />
 <Button x:Name="GetLightButtonReport" Margin="8"
 RelativePanel.Below="GetLightButton" Content="Get Light Report"
 Click="{x:Bind LightViewModel.OnGetLightReport}" />
 <TextBlock x:Name="LightText" Margin="8"
 RelativePanel.RightOf="GetLightButtonReport"
 RelativePanel.AlignBottomWith="GetLightButton"
 Text="{x:Bind LightViewModel.Illuminance, Mode=OneWay}" />
 <TextBlock x:Name="LightReportText" Margin="8"
 RelativePanel.AlignLeftWith="LightText"
 RelativePanel.AlignBottomWith="GetLightButtonReport"
 Text="{x:Bind LightViewModel.IlluminanceReport, Mode=OneWay}" />
 </RelativePanel>
</Border>

Light
As soon as you know how to work with one sensor, the other ones are very similar. Let’s start with
the LightSensor. First, an object is accessed invoking the static method GetDefault. You can get
the actual value of the sensor by calling the method GetCurrentReading. With the LightSensor,
GetCurrentReading returns a LightSensorReading object. This reading object defi nes the
IlluminanceInLux property that returns the luminance in lux (code fi le SensorSample/ViewModels/
LightViewModel.cs):

public class LightViewModel: BindableBase
{
 public void OnGetLight()
 {
 LightSensor sensor = LightSensor.GetDefault();
 if (sensor != null)
 {
 LightSensorReading reading = sensor.GetCurrentReading();
 Illuminance = $"Illuminance: {reading?.IlluminanceInLux}";
 }
 else
 {
 Illuminance = "Light sensor not found";
 }
 }

 private string _illuminance;
 public string Illuminance
 {
 get => _illuminance;
 set => Set(ref _illuminance, value);
 }
 //...
}

For getting continuous updated values, the ReadingChanged event is fi red. Specifying the
ReportInterval property specifi es the time interval that should be used to fi re the event. It may
not be lower than MinimumReportInterval. With the event, the second parameter e is of type

136 ❘ BONUS CHAPTER 5 MORE WINDOWS APPS FEATURES

LightSensorReadingChangedEventArgs and specifi es the LightSensorReading with the Reading
property:

public class LightViewModel: BindableBase
{
 //...
 public void OnGetLightReport()
 {
 LightSensor sensor = LightSensor.GetDefault();
 if (sensor != null)
 {
 sensor.ReportInterval = Math.Max(sensor.MinimumReportInterval, 1000);
 sensor.ReadingChanged += async (s, e) =>
 {
 LightSensorReading reading = e.Reading;
 await CoreApplication.MainView.Dispatcher.RunAsync(
 CoreDispatcherPriority.Low, () =>
 {
 IlluminanceReport =
 $"{reading.IlluminanceInLux} {reading.Timestamp:T}";
 });
 };
 }
 }

 private string _illuminanceReport;
 public string IlluminanceReport
 {
 get => _illuminanceReport;
 set => Set(ref _illuminanceReport, value);
 }
}

Compass
The compass can be used very similarly. The GetDefault method returns the Compass object, and
GetCurrentReading retrieves the CompassReading representing the current values of the com-
pass. CompassReading defi nes the properties HeadingAccuracy, HeadingMagneticNorth, and
HeadingTrueNorth.

In cases where HeadingAccuracy returns MagnometerAccuracy.Unknown or Unreliable, the compass
needs to be calibrated (code fi le SensorSample/ViewModels/CompassviewModel.cs):

public class CompassViewModel: BindableBase
{
 public void OnGetCompass()
 {
 Compass sensor = Compass.GetDefault();
 if (sensor != null)
 {
 CompassReading reading = sensor.GetCurrentReading();
 CompassInfo = $"magnetic north: {reading.HeadingMagneticNorth} " +
 $"real north: {reading.HeadingTrueNorth} " +
 $"accuracy: {reading.HeadingAccuracy}";
 }
 else
 {
 CompassInfo = "Compass not found";
 }
 }
 private string _compassInfo;

Sensors ❘ 137

 public string CompassInfo
 {
 get => _compassInfo;
 set => Set(ref _compassInfo, value);
 }
 //...
}

Continuous updates are available with the compass as well:

public class CompassViewModel: BindableBase
{
 //...
 public void OnGetCompassReport()
 {
 Compass sensor = Compass.GetDefault();
 if (sensor != null)
 {
 sensor.ReportInterval = Math.Max(sensor.MinimumReportInterval, 1000);
 sensor.ReadingChanged += async (s, e) =>
 {
 CompassReading reading = e.Reading;
 await CoreApplication.MainView.Dispatcher.RunAsync(
 CoreDispatcherPriority.Low, () =>
 {
 CompassInfoReport =
 $"magnetic north: {reading.HeadingMagneticNorth} " +
 $"real north: {reading.HeadingTrueNorth} " +
 $"accuracy: {reading.HeadingAccuracy} {reading.Timestamp:T}";
 });
 };
 }
 }

 private string _compassInfoReport;
 public string CompassInfoReport
 {
 get => _compassInfoReport;
 set => Set(ref _compassInfoReport, value);
 }
}

Accelerometer
The accelerometer gives information about the g-force values along x-, y-, and z-axes of the device. With a
landscape device, the x-axis is horizontal, the y-axis is vertical, and the z-axis is oriented in direction from
the user. For example, if the device stands upright at a right angle on the table with the Windows button on
bottom, the x has a value of −1. When you turn the device around to have the Windows button on top, x has
a value of +1.

Like the other sensors you’ve seen so far, the static method GetDefault returns the Accelerometer,
and GetCurrentReading gives the actual accelerometer values with the AccelerometerReading
object. AccelerationX, AccelerationY, and AccererationZ are the values that can be read (code fi le
SensorSample/ViewModels/AccelerometerViewModel.cs):

public class AccelerometerViewModel: BindableBase
{
 public void OnGetAccelerometer()
 {
 Accelerometer sensor = Accelerometer.GetDefault();
 if (sensor != null)
 {

138 ❘ BONUS CHAPTER 5 MORE WINDOWS APPS FEATURES

 AccelerometerReading reading = sensor.GetCurrentReading();
 AccelerometerInfo = $"X: {reading.AccelerationX} " +
 $"Y: {reading.AccelerationY} Z: {reading.AccelerationZ}";
 }
 else
 {
 AccelerometerInfo = "Compass not found";
 }
 }

 private string _accelerometerInfo;
 public string AccelerometerInfo
 {
 get => _accelerometerInfo;
 set => Set(ref _accelerometerInfo, value);
 }
 //...
}

You get continuous values from the accelerometer by assigning an event handler to the ReadingChanged
event. As this is the same as with the other sensors that have been covered so far, the code snippet is not
shown in the book. However, you get this functionality with the code download of this chapter. You can test
your device and move it continuously while reading the accelerometer values.

Inclinometer
The inclinometer is for advanced orientation; it gives yaw, pitch, and roll values in degrees with respect to
gravity. The resulting values are specifi ed by the properties PitchDegrees, RollDegrees, and YawDegrees
(code fi le SensorSample/ViewModels/InclinometerViewModel.cs):

public class InclinometerViewModel: BindableBase
{
 public void OnGetInclinometer()
 {
 Inclinometer sensor = Inclinometer.GetDefault();
 if (sensor != null)
 {
 InclinometerReading reading = sensor.GetCurrentReading();
 InclinometerInfo = $"pitch degrees: {reading.PitchDegrees} " +
 $"roll degrees: {reading.RollDegrees} " +
 $"yaw accuracy: {reading.YawAccuracy} " +
 $"yaw degrees: {reading.YawDegrees}";
 }
 else
 {
 InclinometerInfo = "Inclinometer not found";
 }
 }

 private string _inclinometerInfo;
 public string InclinometerInfo
 {
 get => _inclinometerInfo;
 set => Set(ref _inclinometerInfo, value);
 }
 //...
}

Sensors ❘ 139

Gyrometer
The Gyrometer gives angular velocity values for the x-, y-, and z-device axes (code fi le SensorSample/
ViewModels/GyrometerViewModel.cs):

public class GyrometerViewModel: BindableBase
{
 public void OnGetGyrometer()
 {
 Gyrometer sensor = Gyrometer.GetDefault();
 if (sensor != null)
 {
 GyrometerReading reading = sensor.GetCurrentReading();
 GyrometerInfo = $"X: {reading.AngularVelocityX} " +
 $"Y: {reading.AngularVelocityY} Z: {reading.AngularVelocityZ}";
 }
 else
 {
 GyrometerInfo = "Gyrometer not found";
 }
 }

 private string _gyrometerInfo;
 public string GyrometerInfo
 {
 get => _gyrometerInfo;
 set => Set(ref _gyrometerInfo, value);
 }
 //...
}

Orientation
The OrientationSensor is the most complex sensor because it takes values from the accelerometer, gyrom-
eter, and magnetometer. You get all the values in either a quaternion represented by the Quaternion prop-
erty or a rotation matrix (RotationMatrix property).

Try the sample app to see the values and how you move the device (code fi le SensorSample/ViewModels/
OrientationViewModel.cs):

public static class OrientationSensorExtensions
{
 public static string Output(this SensorQuaternion q) =>
 $"x {q.X} y {q.Y} z {q.Z} w {q.W}";

 public static string Ouput(this SensorRotationMatrix m) =>
 $"m11 {m.M11} m12 {m.M12} m13 {m.M13} " +
 $"m21 {m.M21} m22 {m.M22} m23 {m.M23} " +
 $"m31 {m.M31} m32 {m.M32} m33 {m.M33}";
 }

public class OrientationViewModel: BindableBase
{
 public void OnGetOrientation()
 {
 OrientationSensor sensor = OrientationSensor.GetDefault();
 if (sensor != null)
 {

140 ❘ BONUS CHAPTER 5 MORE WINDOWS APPS FEATURES

 OrientationSensorReading reading = sensor.GetCurrentReading();
 OrientationInfo = $"Quaternion: {reading.Quaternion.Output()} " +
 $"Rotation: {reading.RotationMatrix.Ouput()} " +
 $"Yaw accuracy: {reading.YawAccuracy}";
 }
 else
 {
 OrientationInfo = "Compass not found";
 }
 }

 private string _orientationInfo;
 public string OrientationInfo
 {
 get => _orientationInfo;
 set => Set(ref _orientationInfo, value);
 }
 //...
}

When you run the app, you can see sensor data as shown in Figure BC5-8.

FIGURE BC5-8

Sensors ❘ 141

Rolling Marble Sample
For seeing sensor values in action not only with result values in a TextBlock element, you can make a sim-
ple sample app that makes use of the Accelerometer to roll a marble across the screen.

The marble is represented by a red ellipse. Having an Ellipse element positioned within a Canvas element
allows moving the Ellipse with an attached property (code fi le RollingMarble/MainPage.xaml):

<Canvas Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Ellipse Fill="Red" Width="100" Height="100" Canvas.Left="550"
 Canvas.Top="400" x:Name="ell1" />
</Canvas>

NOTE Attached properties and the Canvas panel are explained in Chapter 33.

The constructor of the MainPage initializes the Accelerometer and requests continuous reading with
the minimum interval. To know the boundaries of the window, with the LayoutUpdated event of the
page, MaxX and MaxY are set to the width and height of the window minus size of the ellipse (code fi le
RollingMarble/MainPage.xaml.cs):

public sealed partial class MainPage: Page
{
 private Accelerometer _accelerometer;
 private double _minX = 0;
 private double _minY = 0;
 private double _maxX = 1000;
 private double _maxY = 600;
 private double _currentX = 0;
 private double _currentY = 0;

 public MainPage()
 {
 InitializeComponent();
 _accelerometer = Accelerometer.GetDefault();
 if (_accelerometer != null)
 {
 accelerometer.ReportInterval = accelerometer.MinimumReportInterval;
 accelerometer.ReadingChanged += OnAccelerometerReading;
 }
 else
 {
 textMissing.Visibility = Visibility.Visible;
 }

 LayoutUpdated += (sender, e) =>
 {
 _maxX = this.ActualWidth—100;
 _maxY = this.ActualHeight—100;
 };
}

With every value received from the accelerometer, the ellipse is moved within the Canvas element in the
event handler method OnAccelerometerReading. Before the value is set, it is checked according to the
boundaries of the window:

private async void OnAccelerometerReading(Accelerometer sender,
 AccelerometerReadingChangedEventArgs args)

142 ❘ BONUS CHAPTER 5 MORE WINDOWS APPS FEATURES

{
 currentX += args.Reading.AccelerationX * 80;
 if (currentX < _minX) currentX = _minX;
 if (currentX > _maxX) currentX = _maxX;

 currentY += -args.Reading.AccelerationY * 80;
 if (currentY < _minY) currentY = _minY;
 if (currentY > _maxY) currentY = _maxY;

 await this.Dispatcher.RunAsync(CoreDispatcherPriority.High, () =>
 {
 Canvas.SetLeft(ell1, _currentX);
 Canvas.SetTop(ell1, _currentY);
 });
}

Now you run the app and move the device to get the marble rolling as shown in Figure BC5-9.

FIGURE BC5-9

SUMMARY
This chapter covered using several devices, including the camera for taking pictures and recording videos, a
geolocator for getting the location of the user, and a bunch of different sensors for getting information about
how the device moves.

You’ve also seen how to use the MapControl to show maps with landmarks, provide Aerial and Aerial3D
views of maps, and include the street-side view experience.

